Lineare Algebra und Analytische Geometrie

Ulrich Bunke

11. Aufgabenblatt

Abgabe: 13.01.05

Aufgabe 1. Sei V ein Vektorraum und $A \subset V$ eine endliche linear unabhängige Teilmenge. Sei $b := \sum_{a \in A} a$. Zeigen Sie die folgenden Aussagen:

- 1. $b \notin A$
- 2. $A \cup \{b\}$ ist linear abhängig.
- 3. Ist $C \subset A \cup \{b\}$ und |C| = |A|, dann ist C linear unabhängig.

Aufgabe 2. Wir betrachten den Vektorraum \mathbb{F}_7^3 und die Teilmenge $A := \{e_1, e_1 + e_2, e_1 + e_2 + e_3\}$, wobei $(e_i)_{i=1,2,3}$ die Standardbasis von \mathbb{F}_7^3 bezeichnet.

- 1. Zeigen Sie, daß A eine Basis von \mathbb{F}_7^3 ist.
- 2. Zeigen Sie, daß der duale Raum $(\mathbb{F}_7^3)'$ eine eindeutig bestimmte Basis $(u_a)_{a\in A}$ mit der Eigenschaft

$$u_a(b) = \delta_{a,b}$$
, $a, b \in A$

besitzt (so eine Basis nennt man auch die zu A duale Basis).

3. Geben Sie diese Basis an, indem Sie die Werte $u_a(e_i)$ für alle $a \in A$ und i = 1, 2, 3 angeben.

Aufgabe 3. Sei V ein K-Vektorraum und $A \subset V$ linear unabhängig. Sei weiter $b := \sum_{a \in A} \lambda_a a \in A$ A > eine Linearkombination von Elementen von A. Zeigen Sie folgende Aussage: Die Familie $(a-b)_{a \in A}$ ist genau linear unabhängig, wenn $\sum_{a \in A} \lambda_a \neq 1$ gilt.

Aufgabe 4. Sei $f: A \to B$ eine Abbildung zwischen Mengen und K ein Körper. Wir definieren $f^*: K^B \to K^A$ durch $f^*(\phi)(a) := \phi(f(a))$ für alle $a \in A$, wobei $\phi \in K^B$ ist.

1. Zeigen Sie, daß $f^*: K^B \to K^A$ eine lineare Abbildung ist.

- 2. Zeigen Sie, daß sich f^* zu einer linearen Abbildung von < B > nach < A > einschränkt, wenn $|f^{-1}(\{b\})| < \infty$ für alle $b \in B$ gilt (man sagt dazu auch, f habe endliche Fasern).
- 3. Sei $g: B \to C$ eine weitere Abbildung von Mengen. Zeigen Sie, $da\beta (g \circ f)^* = f^* \circ g^*$ gilt.

Aufgabe 5. Sei $f: A \to B$ eine Abbildung zwischen Mengen. Die Abbildung $A \xrightarrow{f} B \to \langle B \rangle \to K^B$ hat eine lineare Ausdehnung $\bar{f}: \langle A \rangle \to K^B$.

- 1. Zeigen Sie, daß $\bar{f}(\psi)(b) = \sum_{f(a)=b} \psi(a)$ für alle $b \in B$ gilt, wobei $\psi \in A > ist$.
- 2. Zeigen Sie, daß $\bar{f}(\langle A \rangle) \subset \langle B \rangle$ gilt.
- 3. Zeigen Sie, daß sich \bar{f} zu einer Abbildung $f_*: K^A \to K^B$ durch die Formel 1. ausdehnen läßt, wenn f endliche Fasern hat (siehe 2. der Aufgabe 4 für eine Erklärung dieser Bedingung).
- 4. Möge f endliche Fasern haben. Beschreiben Sie die Abbildungen $f^* \circ f_* \in \operatorname{End}(K^B)$ und $f_* \circ f^* \in \operatorname{End}(K^A)$ möglichst explizit.

Aufgabe 6. Wir betrachten die Standardbasis $A := \{e_i | i = 1, 2, 3, 4\}$ von \mathbb{R}^4 . Wir betrachten weiter die Familie $(a_i)_{i=1,...,4}$, welche durch $a_1 := (1,2,3,4)^t$, $a_2 := (2,3,4,5)^t$, $a_3 := (3,5,7,9)^t$, $a_4 := (5,5,5,5)^t$ gegeben ist.

- 1. Bestimmen Sie die Dimension des von $(a_i)_{i=1,\dots,4}$ in \mathbb{R}^4 erzeugten Unterraumes.
- 2. Bestimmen Sie die größte Zahl n derart, daß $(a_i)_{i=1,...,n}$ linear unabhängig ist.
- 3. Ergänzen Sie $(a_i)_{i=1,\dots,n}$ durch Elemente der Standardbasis zu einer Basis B (Die Zahl n wurde in 2.bestimmt).
- 4. Bestimmen Sie die Basiswechselmatrizen M(A,B) und M(B,A).
- 5. Bestimmen Sie die Koordinaten von a4 bezüglich B.