Prof. Dr. Ulrich Bunke

Noncommutative Homotopy theory II Exercise 1

hand in until: 24.04.2023

Exercise 1. Let G be a topological group and G^{δ} be G with the discrete topology. We have a canonical homomorphism $G^{\delta} \to G$. Show that $\operatorname{Res}_{G^{\delta}}^{G}$: $GC^*\operatorname{Alg}^{\operatorname{nu}} \to G^{\delta}C^*\operatorname{Alg}^{\operatorname{nu}}$ is the left-adjoint of a right Bousfield localization. Conclude that $GC^*\operatorname{Alg}^{\operatorname{nu}}$ is complete and cocomplete and derive formulas for limits and colimits in $GC^*\operatorname{Alg}^{\operatorname{nu}}$ in terms of limits and colimits in $G^{\delta}C^*\operatorname{Alg}^{\operatorname{nu}}$.

Exercise 2. Let *H* be a closed subgroup of *G* and *A* be in HC^*Alg^{nu} . We consider the $G^{\delta}-C^*$ -subalgebra

$$\{f \in C_b(G, A) \mid (\forall g \in G, \forall h \in H \mid f(gh) = \alpha_{h^{-1}}f(h))\}$$

of the G^{δ} - C^* -algebra $C_b(G, A)$ with the left-regular action. We let $\operatorname{Ind}_H^G(A)$ be the closure of the subalgebra of functions such that $\operatorname{pr}_{G/H}(\operatorname{supp}(f))$ is compact in G/H. Show that $\operatorname{Ind}_H^G(A) \subseteq C_b(G, A)^c$, where $(-)^c$ takes the subalgebra of continuous elements (the right adjoint in Ex. 1).

Exercise 3. Let H be a closed subgroup. Show that the restriction $\operatorname{Res}_{H}^{G}$: $GC^*\operatorname{Alg}^{\operatorname{nu}} \to HC^*\operatorname{Alg}^{\operatorname{nu}}$ has a right-adjoint and describe this right-adjoint explicitly.

Exercise 4. We consider the group of *p*-adic integers defined as the limit

$$\mathbb{Z}_p := \lim \mathbb{Z}/p^n \mathbb{Z}$$

in topological groups, where $\mathbb{Z}/p^n\mathbb{Z}$ has the discrete topology. Describe the normalized Haar measure μ on \mathbb{Z}_p . Calculate $\int_{\mathbb{Z}_n} |g|_p^s \mu(g)$ for $\operatorname{Res}(s) \geq 0$.