Prof. Dr. Ulrich Bunke

Noncommutative Homotopy theory II Exercise 3

hand in until: 15.05.2023

Exercise 1. Assume that G is a compact group. Let $\epsilon : \mathbb{C} \to K(L^2(G) \otimes \ell^2) = K_G$ be the homomorphism given by the projection onto the space of constant functions on G and the multiples of the first basis vector of ℓ^2 . Show that (K_G, ϵ) is a tensor idempotent in $GC^*\mathbf{Alg}_h^{\mathrm{nu}}$.

Exercise 2. Show: If G is not compact, then K_G does not contain any finitedimensional projection.

Exercise 3. Let H be a closed subgroup of G. Let A be in $HC^*\mathbf{Alg}^{nu}$ and B be in $GC^*\mathbf{Alg}^{nu}$. Show that $\mathrm{Ind}_H^G(A \otimes \mathrm{Res}_H^G(B)) \cong \mathrm{Ind}_H^G(A) \otimes B$ in $GC^*\mathbf{Alg}^{nu}$.

Exercise 4. Let G be a locally compact abelian group. Show that the left-regular representation of G on $L^2(G)$ together with the action of \hat{G} by multiplication operators $(\chi, f) \mapsto (g \mapsto \chi(g)f(g))$ generate $K(L^2(G))$.