Prof. Dr. Ulrich Bunke

Noncommutative Homotopy theory II Exercise 5

hand in until: 05.06.2023

Exercise 1. Let H be a closed subgroup of a locally compact group G and G/H be compact. Since Coind^G_H is the right-adjoint of the symmetric monoidal functor Res^G_H the functor Coind^G_H is lax symmetric monoidal. It therefore preserves algebras. Therefore $\operatorname{Coind}^G_H(\mathbb{C})$ is an algebra. Describe the product explicitly.

Exercise 2. Consider the cyclic group C_3 . Determine all projections in $C_r^*(C_3)$ explicitly.

Exercise 3. Let G be discrete and consider the algebra $C^*_{\max}(G) := \mathbb{C} \rtimes G$. Show that the linear map $f \mapsto f(e)$ from $C_c(G)$ to \mathbb{C} extends to a trace $\tau : C^*_{\max}(G) \to \mathbb{C}$.

Exercise 4. Let $\tau : A \to \mathbb{C}$ be a trace on a C^* -algebra A. Show that the map $\operatorname{Hom}_{C^*\operatorname{Alg}^{\operatorname{nu}}}(\mathbb{C}, A) \to \mathbb{C}, f \mapsto \tau(f(1))$ canonically extends to a semigroup map $\tau : \pi_0\operatorname{Map}_{L_KC^*\operatorname{Alg}_h^{\operatorname{nu}}}(\mathbb{C}, A) \to \mathbb{C}.$