Prof. Dr. Ulrich Bunke

Noncommutative Homotopy theory II Exercise 9

hand in until: 17.07.2023

Exercise 1. Let G be a discrete group and $E: GOrb \to \mathbf{Sp}$ be a functor. Let \mathcal{F} be a family of subgroups and $i: G_{\mathcal{F}}Orb \to GOrb$ be the inclusion. Show that the Davis-Lück assembly map $i_!i^*E(*) \to E(*)$ is equivalent to the map $E(E_{\mathcal{F}}G) \to E(*)$ induced by the projection to the point.

Exercise 2. Let G be a discrete group and $E : GOrb \to \mathbf{Sp}$ be a functor. Let \mathcal{F} be a family of subgroups and $i : G_{\mathcal{F}}Orb \to GOrb$ be the inclusion. Let H be a subgroup of G and $j : HOrb \to GOrb$ be the induction. Show that $i_i i^* E(G/H) \to E(G/H)$ is equivalent to the Davis-Lück assembly map for $j^* E$ and the family $\mathcal{F} \cap H$.

Exercise 3. Let G be a discrete group, \mathcal{F} be a family of subgroups, and E, E': GOrb \rightarrow **Sp** be two functors with an equivalence $E_{|G_{\mathcal{F}}\text{Orb}} \simeq E'_{|G_{\mathcal{F}}\text{Orb}}$. Show that if X is a G-topological space with stabilizers in \mathcal{F} , then we get an induced equivalence $E(X) \simeq E'(X)$.

Exercise 4. Calculate the homotopy groups of the domain $RKK^{\mathbb{Z}}(E_{\mathcal{F}in}\mathbb{Z}, \mathbb{C}, \mathbb{C})$ of the Kasparov assembly map $\mu_{\mathbb{Z},\mathbb{C},\mathbb{C}}^{Kasp}$.

Exercise 5. * Let *B* be a unital *C*^{*}-algebra and $\operatorname{Mod}(B)^{fp}$ be the *C*^{*}-category of finitely generated projective Hilbert-*B*-modules and compact operators. We can consider *B* as an object of $\operatorname{Mod}(B)^{fp}$. Show that the inclusion $B \to \operatorname{Mod}(B)^{fp}$ induces an equivalence $K(B) \to K(A(\operatorname{Mod}(B)^{fp}))$.

Hint: Write $A(Mod(B)^{fp})$ as a filtered colimit of A(-) applied to subcategories with finitely many objects including B. If C is such a subcategory construct a Morita bimodule exhibiting a Morita equivalence between B and A(C). Finally use that K commutes with filtered colimits and is Morita equivariant.