Noncommutative Homotopy theory Exercise 13

hand in until: 06.02.2023

Exercise 1. $K_*(X)$ is a $K^*(X)$ -module: Check that the formula for the product $K^m(X) \otimes K_n(X) \to K_{-m+n}(X)$ from the lecture defines a module structure. Show further, that for c,d in $K^*(X)$ and h in $K_*(X)$ we have $\langle c,d\cdot h\rangle = \langle c\cdot d,h\rangle$, where $\langle -,-\rangle$ denotes the KU_* -valued pairing between K-theory and K-homology.

Exercise 2. K-homology and K-theory of surfaces: Calculate $K_*(\Sigma_g)$ and $K^*(\Sigma_g)$ for a compact oriented surface Σ of genus g.

Hint: Use $KU_* \cong \mathbb{Z}[\beta, \beta^{-1}]$, homotopy invariance, suspension axiom and the Mayer-Vietoris sequences for K_* and K^* .

Describe the module structure and pairing explicitly.

Exercise 3. K-theory is invariant under inner automorphisms: Assume that A is a C^* -algebra and consider a unitary u in the multiplier algebra M(A) of A. It defines an automorphism $\phi: A \to A$ by $\phi(a) := uau^*$. Show that $K(\phi): K(A) \to K(A)$ is equivalent to the identity. Give an example of an automorphism of a C^* -algebra which does not act as identity on K-theory. Hint: Use an exercise about matrix tricks from a previous sheet.

Exercise 4. K-theory of bounded operators is trivial: Let H be a separable ∞ -dimensional Hilbert space. Show that $K(B(H)) \simeq 0$.

Hint: Choose isomorphisms $H \cong H \oplus H$ and $H \cong \bigoplus_{\mathbb{N}} H$. The first provides the second isomorphism in

$$e: B(H) \to \operatorname{Mat}_2(B(H)) \cong B(H)$$
,

where e is the left upper corner inclusion. The second provides the second isomorphism in

$$s: B(H) \xrightarrow{\oplus_{\mathbb{N}} \mathrm{id}} B(\bigoplus_{\mathbb{N}} H) \cong B(H)$$
.

We now observe that

$$e \oplus s : B(H) \xrightarrow{\operatorname{diag}(\operatorname{id},s)} \operatorname{Mat}_2(B(H)) \cong B(H)$$

is conjugated to s by some unitary in B(H). It follows from Exercise 3 that

$$[e] + [s] = [s] : K(B(H)) \to K(B(H))$$
.

Since K(B(H)) is a group in \mathbf{Sp} this implies [e]=0. But since $[e]=\mathrm{id}$ by stability we conclude that $K(B(H))\simeq 0$.

Show more generally, that $K(M^s(A)) \simeq 0$, where $M^s(A)$ is the stable multiplier algebra of A, i.e., $M^s(A) := M(A \otimes K)$.