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1 Intro to the course

2 (-C*-algebren

2.1 Basic Definitions

2.1.1 G-C*-algebras

G - a group



- BG category with one object * and automorphisms GG

Definition 2.1. We define the category of G-C*-algebras as GC*Alg™ := Fun(BG, C*Alg™).

explicitly:

- objects: C*-algebras A with action o : G — Autc-pjgm(A)
— write (A4, a)

— g oy

—agn =0agoaqpforall g,hin G

- morphisms: f: (4,«a) — (B, )
— f: A — B - morphism of C* algebras

— condition: f(aya) = B, f(a) for all g in G

this is good for discrete groups

- for topological group G: use topological enrichment to put continuity requirement
- BG is topologically enriched

— Hompg(*, %) 2 G

- C*Alg™ is topologically enriched

— Homg+a1gm (A4, B) has point-norm topology

- write Fun,. for functors in the enriched sense: continuous on topological mapping spaces

Definition 2.2. For a topological group we define the category of G-C*-algebras as
GC*Alg™ := Fun.(BG, C*Alg™).

explicitly:

- additional requirement: G 3 g — «,4(a) € A is continuous for every a in A

note: «: G — Aut(A) is not necessarily continuous for the norm topology



2.1.2 First examples

trivial action:

- Ain C*Alg™

-set g :=1idy for all gin G
- get (4, a) in GC*Alg™

- often denoted by A

X locally compact space

- p: G x X — X continuous G-action
-y Co(X) = Cp(X)

- (agf)(x) := flpg-1(x))

- 1s continuous

—get (Co(X), @) in GC*Alg™

even better: Gelfand duality is topologically enriched
Aut e argm (Co(X)) = Autmop(X)
- compact open topology on Autmop(X)

- point-norm topology in Autcsaign (Co(X))

some warnings:

note: in general G does not act continuously on C,(X)

Problem 2.3. Show that the action of R on Cy(R) is not continuous.

- G — Aut(Cp(X)) is not norm continuous

Problem 2.4. Let T, be the translation by w in U(1). Show that ||T, — id|| = 2 if u # 1.



recall multiplier algebra M (A) of A
- hast strict topology:

- m; — m if m;a — ma in norm for all ¢ in A

p:G— U(M(A)) homomorphism
- continuous for the strict topology

- define a: G — Aut(A)

— Q= Pgapg—1
— g = g IS continuous

- get (4, a) in GC*Alg™

p: G — U(H) unitary representation of G on Hilbert space
- assume p is strongly continuous (will always be assumed)

— means: (g,h) — pyh is norm continuous for all h in H

Problem 2.5. Recall that B(H) = M(K(H)). Show that the strict and the strong topology
on U(B(H)) coincide.

- hence p is strictly continuous
- for any G-invariant (under conjugation) subalgebra A of K (H)
- (A4, @) in GC*Alg™

= Qg i= PgApPg—1

Example 2.6. it is not natural to require that p is norm continuous
- G x X — X continuous on locally compact space
~Ly: X — X action of g in G

- ;v a G-invariant Radon measure



— recall Radon measure:
— finite on compact sets
— p(C) = infecy p(U) (outer regular)

— pu(U) = supgcy u(K) (inner regular on opens)

—means: Ly, = p forall gin G

- L*(X, u) has unitary G-action

~(pgf)(h) = f(g~"h)

—unitary: [, |f(g ' hPu(h) = [ 1f (W) Lgui(g) = [ [F(R)[ulg)
~ also notation: Ly .u(h) = u(gh)

- p: G — U(L*(X,p)) is strongly continuous, but in general not norm continuous

Problem 2.7. Show these assertions.

2.1.3 Categorical properties of GC*Alg™

recall: C*Alg™ is complete and cocomplete

have forgetful functor GC*Alg™ — C*Alg™
Corollary 2.8. The forgetful functor GC*Alg™ — C*Alg™ is conservative.

Corollary 2.9. For a discrete group G the category GC*Alg™ is complete and cocomplete
and GC*Alg™ — C*Alg™ preserves limits and colimits.

for a diagram A : I — C*Alg™
- limit or colimit is formed in C*Alg™

- gets induced G-action

for topological group:



- colims A has induced G-action

- it is again continuous

Problem 2.10. Show that the induced G-action on a colimit of G-C*-algebras is continu-
ous.

Lemma 2.11. For a topological group the category GC*Alg™ is cocomplete and GC*Alg™ —
C*Alg™ preserves colimits.

- lim; A also has an induced G-action

— this is not always continuous

Example 2.12. U(1) is a topological group
- C(U(1)) has actions «, given by (o, ..f)(v) == f(u™v)

- action on [ .n(C(S'), ay,) is not continuous

neN
Problem 2.13. Show this assertion.

but finite limits are ok

Lemma 2.14. GC*Alg™ is finitely complete and GC*Alg™ — C*Alg™ preserves limits.
Problem 2.15. Show Lemma [2.1])

Proposition 2.16. GC*Alg™ has all products.

Proof. ((A;, a;))ier family in GC*Alg™
- form [[,.; A; in C*Alg™

- get induced G-action «

-y = [ qig

- g — oy f is not continuous in general

- call f continuos if this is the case

(I'Lic; Ai) subset of continuous elements

- observe: is G-invariant closed x-subalgbera



Problem 2.17. Show this assertion.

oz; - restriction of o, to continuous elements

claim: ((J[,c; 4i)¢, o) represents products

check universal property:

(fi : (T,5) = (Aj, o)) given

- induced map f: T — Hie 1 A; is G-equivariant such that pr, o f = f;

- takes values in continuous elements

- llagf(t) = FO)Il = supier [[evig fi(t) — fi(B)]] = supicy || fi(Bgt — D) < [|8gt — 1]

— use that f; is contractive for every i

]

Corollary 2.18. For every topological group the category GC*Alg™ is complete and
cocomplete.

G -topological

- G° - G with discrete topology

- (4,a) in G°C*Alg™

define A®:={f € A| G 3 g — a,f is continuous}

Lemma 2.19. A€ is a sub-C*-algebra and oae is continuous.
Proof. f, f" in A®implies that f + Af’, ff' and fx* belong to A°
- since operations of A are continuous

. o
- o preserves A¢ by associativity

A€ is closed a; — a, a; € A° implies a € A€

- llaga = all < llag(a — @)l + llaga: — aill + [la; — o



— first chose i to make ||a; — a/| small
— then also [lay(a — @;)|| is small independently of g

— then choose g to make ||aya; — a;|| small

O
(4, @)
Proposition 2.20. Show that there is a right Bousfield localization
Res&s : GC*Alg™ = G°C*Alg™ : (—)° .
Proof. Homgexalgm (A, B€) 2 Homgsce argn (Resgs A, B)
it is clear that Homgcxatgm (A, B®) C Homgso argm (ResSs A, B)
given [ € Homgsc» Algnu(Resg(;A, B)
- claim f takes values in B¢
- agf(a) = f(Bya)
O

—use g — Bya is continuous

the following are egeneral facts following from the Bousfield localization

Corollary 2.21. GC*Alg™ is complete and cocomplete. Colimits are calculated in
GPC*Alg™ and limits are given by the composition (1imC’C"Als™ Res&s(—))°.

2.1.4 Two-categorical structure

C*Alg™ has some two categorical structure
-f,g:A— B

- could be conjugated by w in M(B): f = ugu*

- turns Home»a1gni (A, B) into a category Fun(A, B)

- composition of 2-morphism u with 1-morphism h is only partially defined: hou :=
M (h)(u)



— needs h to be essential

(A, ), (B, ) in GC*Alg™
- G acts on Fun(A, B) by conjugation

-9 f =810 foaqy

[ (A e) = (B,5)

- f can be equivariant

- f € Fun(A, B)% - one-categorical invariants
-9 f=7

~foa,=B,0f

could also require f € Fun(A4, B)"“ - two categorical invariants
— f is weakly equivariant:

— f extends to pair (f,p)

— p: G — U(M(B)) strictly continuous

— cocylcle relation: B,(pg)pn = phg

— g f=py-[-p,foralginG

_pg:fig'f

2.1.5 Tensor products

consider ? in {min, max}
— ®7 — : C*Alg™ x C*Alg™ — C*Alg™ is enriched bifunctor

- get induced tensor product — ®, — : GC*Alg™ x GC*Alg™ — GC*Alg™

Corollary 2.22. ®- equips GC*Alg™ with a symmetric monoidal structure.

10



the tensor products inhertis the exactenss properties from the non-equivariant case
- ®max preserves exact sequences

- ®min preserves inclusions

2.2 Induction and Restriction

additional richnesss of equivariant theory comes from change of group functors

2.2.1 Restriction

¢ : H — G continuous homomorphism

get restriction functor

- ¢o* : GC*Alg™ — HC*Alg™

- ¢7(A,0) = (A, a0 )

write often Res% := ¢* - in particular if ¢ is inclusion of a subgroup

forgetful functor GC*Alg™ — C*Alg™ is special case

2.2.2 Induction

assume:
- GG locally compact
- H — G inclusion of closed subgroup

— G/H - locally compact space

Ain HC*Alg™ with H-action «
- consider space of bounded continuous functions f : G — A such that:

— f(gh) = ap-1f(g) for all hin H

11



~ prg,u(supp(f)) is compact
- form closure wr.t. norm || f|| := sup,cq || f(9)|| in Cy(G, A)
- denote resulting C*-algebra by Ind%(A)

- has continuous G-action (p,f)(¢") == f(97'¢")

continuity not completely obvious: supp(f) is not compact on G in general

Problem 2.23. Show continuity of G-action

extend Ind% to morphisms:
o:A— A
- define Ind%(f) : Ind%(A) — Ind$(A')

~ Ind(¢)(f) := o f

Definition 2.24. The functor Ind% : HC*Alg™ — GC*Alg™ is called the induction
functor.

Example 2.25.
Co(G) = Ind§(C)

Co(G/H) = Indf (C) H

H can be open and closed
- the connected component of G
- any subgroup if G discrete

- a clopen subgroup if G totally disconnected, e.g. Z,

have natural transformation
b:id — Res$; o Ind%

- by : A — Res$(Ind%(A))

12



ap-1Qa he H

- bala)(g) = { 0 else

looks like unit of adjunction, no obvious counit Ind% o Res%(A)) — A

2.2.3 Coinduction

assume: G/H is compact or G discrete

consider again subspace Cy(G, A) := {f € Cy(G, A) | (Vh € H | arf(gh) = f(g))}
- has G-action by left-regular representation

- Coind$(A) := (Cy(G, A)T)¢ - continuous vectors

- ¢ : A — B homomorphism

— induces Coind%(¢) : Coind%(A) — Coind$(A), f > ¢o f
get coinduction functor Coindg : HC*Alg™ — GC*Alg™
- if G/H is compact, then Ind$ = Coind% (A)

- have natural transformation
- ¢ : Res$ o Coind$, — id

— ca(Res%(Coind$(A)) — A, f— fle)

looks like counit of an adjunction
- indeed have unit e : Coind% o Res% — id
— ey : A — Coind%(Res(A))

—eala)(g) == az1a
Proposition 2.26. We have an adjunction

Res% : GC*Alg™ < HC*Alg™ : Coind§, .

Problem 2.27. Show|Proposition 2.26

13



2.2.4 multiplicative induction

Z - finite G-set
- can define A®Z := @, A
- get G-action by permutations of tensor factors

_A®Z ¢ GCrAlg™

for unital A can assume Z infinite

- for finite subset F of Z consider ) A
- for F' — F” inclusion

— use unit to define @, A = Q. A

— Qreras > Qperty @ Qrerpnrla

-~ Q, A=colimpcy |pece) Qp A

— get G-action by permutation of tensor factors

&), Maty(C) - spin chain

2.3 Crossed products
2.3.1 Haar measures

X - locally compact space

- 1 - Radon measure

— properties:
— finite on compact sets

— u(C) = infecpy u(U) (outer regular), U runs over open subsets

14



— u(U) = supgcy u(K) (inner regular on opens), K runs over compact subsets

- p determined by the functional C.(X) — C

~fe [y f@)u(x)

¢ : X — X' proper map

- 9" Co(XT) = Cu(X)

- ¢ - push-forward of measures

— defining relation: [, f(2')(oup)(z) = [ f(o(2))p(x)
G - locally compact group

- 1 - Radon measure on G

Ly

- say p is left invariant if Ly, = p

—means for all fin C.(G) and ¢g in G

/G F(g~ () = /G F(h)u(n)

Definition 2.28. A non-zero left invariant Radon measure on G is called a Haar measure.
Theorem 2.29. On G there is a unique (up normalization) Haar measure on G.

Remark 2.30. have natural normalization in some cases:
- for compact G: [, u(g) =1

- for infinite discrete groups: u({e}) =1 O

Example 2.31.
G discrete: counting measure: » gec Og 1s a Haar measure
R™ - Lebesgue measure is a Haar measure

G - a Lie group

15



- choose vol € A™**g*

~ extends uniquely to left invariant volume form (L7, vol)(g) := vol

- defines Haar measure by [, f(g)u(g) = fG,or f(g)vol(g)

1 - Haar measure

- in general p is not right invariant
- Jo f(h)Rgup(h) = [, f(hg)u(h)
- Ryt is left invariant, Radon

— by uniqueness of Haar measure: there exists A(g) in R such that R, .pu = A(g)u
Proposition 2.32. A : G — R is a continuous homomorphism.

Example 2.33.

G is called unimodular if A =1
- compact groups

- discrete groups

- abelian groups

- for a Lie group: if det Ad : G — Aut(g) — R* is constant 1
Example 2.34. Consider az 4 b-group R x R*

- determine Haar measure and A explicitly

I: G — G - inversion

- Lp=Ap

~ Jo Fanle) = J F(9)Al9) " ulg)
~ I, A7ty are right invariant

— conclude: I,y = ¢A™tyu for some constant ¢

16



— apply I, again:
—get u=c AN =c2p
—conclude ¢ =1

2.3.2 The maximal crossed product

- Ain GO*Alg™
- consider C,(G, A) with convolution product

- (f* f)(9) = [ f(W)an(f' (R g))u(h)
Problem 2.35. Check associativity

(f" = (f* f)g) = /f”(h)ah( F(Ron (' (R"h™ g))u(R)) ()

define x-operation: f*(g) := a,(f(g~")*)A(g)™*

Problem 2.36. Check (f*)* = f and (f' x f)* = f** f"*.

Proof. (f*)*(9) = ag(f* (g7 )NA(9) ™" = aglay-1(f(9))Alg) " Alg™) ™" = f(g)

17



(f ) (g) = ag(| f(Man(f(h~ g "))u(h)) Alg)™

G acts by multipliers on C.(G, A)
- (h* f)(g) = anf(g~"h)

- (f" = h)(g) == ['(gh)

el

A acts by multipliers

- (ax f)(9) == af(g)

- (fxa)(g) == f(g)ag(a)
Problem 2.37. Check f'x (hx f)=(f"«h)x f and (f'xa)x f = f' '« (ax f).

Check: hxax*h™' = ay(a) in multipliers

Proposition 2.38. C.(G, A) with the convolution product and the involution as indicated
1s a pre-C*-algebra.

Proof. Exercise for discrete groups.

For non-discrete groups

- consider non-degenerated representation ¢ : C.(G,A) — B
—means: C.(G,A)B C B dense

- get homomorphism p : G — U(M(B))

18



- get homomorphism ¢ : A — M(B)
— have equality ¢(f) = [, ¥(f(9))psn(9)

- get bound: [[@(f)|| < [l fllz )

O
Definition 2.39. We define the mazimal crossed product A x G := compl(C.(G, A)).
Proposition 2.40. We have a functor — x G : GC*Alg™ — C*Alg™.
Proof. A C.(G, A) is functor GC*Alg™ — C7  Alg™
-¢p:A— Bmapsto f— (g ¢of) O
Remark 2.41. — x G is functorial for weakly equivariant maps
(¢, p) : A — B weakly equivariant A — B
- define f = (g pg¢(f(9))) O

2.3.3 Covariant representations

(A, @) in GC*Alg™
Definition 2.42. A covariant representation of A is a pair (¢, p) of a unitary representa-

tion p: G — U(H) and a homomorphism ¢ : A — B(H) such that ¢(aga) = pgd(a)p; for
all g in G and a in A.

note that conjugation action on B(H) is not continuous in general
- can therefore not say that ¢ is just morphism in GC*Alg™
- get map ¢. : C.(G,A) — B(H)

- éc(f) = fG ¢(f(9))ﬂglu(g)
Problem 2.43. Show that this is a x-homomorphism.

. is called the integrated form of (p, @)

- extends to ¢ : A x G — B(H)

19



Definition 2.44. (¢, p) is non-degenerated if p(A)H is dense in H.

Proposition 2.45. There is a bijection between the sets the non-degenerated covariant
representation (¢, p) of (A, G) and non-degenerated representations ¢ : A x G — B(H)

Proof. given (¢, p) construct ¢. and finally ¢

A and G act as multipliers on A x G

given ¢ - construct ¢ : A — B(H) and p: G — U(H) as above

]

Remark 2.46. if (¢, p) is not non-generated, then lose the information about p on

(G(A)H)*

2.3.4 The reduced crossed product

choose an injective representation ¢ : A — B(H)
- consider p: G — U(B(L*(G, H)) given by (pnv)(g) = v(h~tg)
- define representation ¢ : A — B(L*(G, H)) by (¢(a)v)(g) := ¥ (ag-1a)v(g)

— check: (¢, p) is covariant

(¢(a)pr-1v)(h"g)
= P(ag-1pa)(pp-1v) (R~
= Y(ag-1,a)v(g)
p(ana)v(g)

(pno(a)pn-1v)(g)
'9)

the covariant representation induces C.(G, A) — B(L*(G, H))

- get norm || — ||, in C.(G, A) - called the reduced norm

=1l

Definition 2.47. We define the reduced crossed product A x, G := C.(G, A)

get functor — %, G : GC*Alg™ — C*Alg™
Problem 2.48. Show that || — ||, is independent of choice of 1.

20



Problem 2.49. Show that Ax,.G extends naturally to a functor which preserves injections.

have canonical morphism A x G — A x, G

2.3.5 Further aspects and examples

Example 2.50.
C*(@) := C x G -maximal group C*-algebra

C¥(G) := C x, G - reduced group C*-algebra O

Remark 2.51 (Fourier transformation).
G abelian

- @G - dual group of characters

- Fourier transformation

e f

- f©) = [ 9) F(9nlg)

- dual Fourier transformation
— h(g) == [z h(E)(E)

- normalize [i on G such that

~

= O
Example 2.52.

Z

I

U(1)

12

U(1) =27

—

discrete group = compact group

counting measure corresponds to normalized Haar measure

~

R

1%

R

21



|/—\| = 5| — | (Lebesguemeasure)

Lemma 2.53. The Fourier transformation induces an isomorphism C*(G) = Co(G)

Example 2.54 (dual group action). G actson Ax G

- (& )= (g E&(9)f(9)

- (€N = &f) = Jo &) f(h)an(E(h™g) f' (R h))du(h) = &(9) [ f(R)an(f' (R g))u(h) =
(& = f))(9)
- (A% Q) %G = K(L*G)) ® A (Takai duality) O

Example 2.55 (G-graded algebras). G finite

Definition 2.56. A G-graded algebm 15 a C*-algebra with a decomposition A = @geG
such that AgAy C Agy for all g, 9" in G and A}, C Ag-1.

A x G is G-graded

-ANGN@geG

- write elements as (g, A)

- (g9,a) * (¢, a') = (99, ag(a)d’

G-grading is same information as action of G (for G abelian)

- (A % G), is image of action of projection p : [ &(g) " defi(§) ]

Example 2.57 (finite groups).

G finite

- LX(G) = P, ce. Ve ® V) - Peter-Weil

- C*(G) generated by Ly = @, am(g) ® idy,
- projection to factor V; ® V* is in C*(G)

— given by [, xx(9) " Lgu(g) (where x is the character)

22



- hence 7(g) ® idy, is in C*(G)
- Schur Lemma: End(V;) ® idy» is in C*(G)
- C*(G) = @, End(V;) - sum of matrix algebras

~

- K. (C*(G)) = Z|G] representation "ring” O

3 KK¢

3.1 Homotopy invariance
3.1.1 The localization

start with GC*Alg™

- category is topologically enriched

- write Hom, (A, B) for the topological mapping space

- Hom, (A, B) = Hom(A, B)% - G-fixed points with conjugation action

— Homrop (X, Hom(A, B)) = Home« a1gn (A, C(X) ® B) for all compact spaces X

get notion of homotopy equivalence

Definition 3.1. We define the Dwyer-Kan localization Ly : GC*Alg™ — GC*Alg," at
the homotopy equivalences.

the following are proved the same way as in the non-equivariant case

Proposition 3.2.
1. Mapges argm (A, B) > (Hom (A, B).

2. Ly, is symmetric mononidal for ®; with 7 in {max, min}.

Co

. Ly, sends Schochet fibrant squares to pull-back squares.

B

. GC*Alg," is left-exact.

R

The bifunctor @, on GC*Alg," is bi-left-exact.
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6. GC*Alg," has all coproducts and Ly, preserves them.

L; : Fun(GC*Alg}", D) = Fun""(GC*Alg™, D)

L; : Fun'*(GC*Alg}®, D) = Fun™%"(GC*Alg™, D)
Ly : Funf,  (GC*Algy", D) 5 Fun( " (GC* Alg™, D)
L; : Fun( 5 (GC* Alg)", D) = Fun(" (GC* Alg™, D)

Qo Ly~ Lo S loops and suspension

Puppe sequence for f: A — B

o Ly(SCN) 2 Lu(5(4) 2 Ly(s(B)) X La(C(f) L La(4) 2D L,(B)

each segment is fibre sequence

the verifications are completely analogous as in the non-equivariant case

3.1.2 Descend of functors

H—d
GCL

consider functors: Resfl, Ind%, Coindé, —xG, — .G

Lemma 3.3. The functor Resg, Inds, — x G, — X, G functors refine to topologically
enriched functors.

for Coind} is is only true if L/G is compact
- this case is then covered by Indk

use: F': GC*Alg™ — G'C*Alg™ a functor

Proposition 3.4. If there is a natural transformation F(A® B) = F(A) ® B for all
commutative algebras B such that F(A) = F(A® C) = F(A) ® C = F(A) is the identity,
then F s topologically enriched.
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Proof.

Homrop (X, Hom (A, B)) = Homg(A, B® C(X))
— Hom, (F(A), F(B® C(X)))
= Homg (F(A), FI(B) ® C(X))

1%

Homrop (X, Home, (F'(A), F(B)))

use additional property to check that this map is the correct one on underlying sets [

Lemma 3.5. We have for any C*-algebra B and choice of tensor product that
Res% (A ® B) 2 Res$(A) @ B .

Proof. obvious m

HCG
Lemma 3.6. For B in C*Alg™, A in GC*Alg™ and 7 € {min, max} we have
Ind%(A) ®; B = Ind% (A ®- B) .

Proof. - not completely obvious

-1:Cy(G,A) ® B — Cp(G,A®- B) is a map

- but not an isomorphism in general

- similarly ¢ : Ind%(A) ®; B — Ind% (A ®; B)

for surjectivity:

f € Ind% (A ®; B)

- choose function y on G with proper support over G/H such that [, x(gh)u(h) =1
-xf € Cy(G, A, B)

- f(9) = Jo(on ® idp)(x(gh) f (gh))p(h)

- find approximation yf = Z?mte fi ® b; + r with r as small as we want

- can assume: X f; = fi, Xxr = r for some function with proper support over G/H

- flg) =0 [ anfi(gh) @ bip(h) + [, anr(gh)pu(h)
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- Juonr(gh)u(h) = [ anr(gh)x(gh)u(h)

- this is small if r is small

for injectivity:

Ind%(A) ®» B — Ind$ (A ®» B) % Cy(G, A ®, B) is injective

since it is also Ind%(A) ®» B X835, Co(G,A) ® B — Cy(G,A®: B)

Corollary 3.7. The functor Ind% descends to the homotopy localization.

f + Coind4(f) in general not continuous
- only if G/L is compact

- the following exercise shows where the problem is

Problem 3.8. Show that the functor A — Cy(A) on C*Alg™ is not continuous.

Lemma 3.9. We have B ®y (A X G) = (B®y A) 3 G .

Proof. have map B ®y (A %, G) = (B®y A) ¥, G
- [Wil07, Thm. 2.75] for maximal products

- [Ech10l Lem. 4.1] for minimal /reduced O
Corollary 3.10. The functors — x G and — X, G descend to the homotopy localization.

Lemma 3.11. If G is closed in L and L/G is compact, then we have an adjunction

Resh : LC*Alg™ < GC*Alg™ : Coind} .

Proof. adjunctions descend if the functors do O]
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3.2 (-stability
3.2.1 The localization

general principle

C - oco-category

- F': C — C endofunctor

- Wpg - morphisms that are sent to equivalences by F
— called F-equivalences

- want to understand ¢ : C — C[W,']

assume: zig-zag 7 : id ~ F
- assume: ~€ Wgp

— more precisely: have sequence of natural transformations

id—->F <« K- -« F=F
— all components of all these transformations are in Wg

let F'C - full subcategory of C on image of F

- we say that n preserves F'C if F;(FC) C FC and the components of F; — F;1; are
equivalences for all objects in F'C

notation:
i : F'C — C inclusion

L : C — FC - corestriction of F
Lemma 3.12. If n preserves F'C, then the functor L : C — F'C presents its target as the
Dwyer-Kan localization of C at Wg.

Proof. must show:
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L* : Fun(FC,D) = Fun"*(C, D)
-®: FC—D
- L*® := ® o F obviously inverts Wg

— so functor takes values in target as indicated
claim: 7* : Fun""#(C, D) — Fun(FC, D) is inverse

consider L* o i* : Fun"7(C, D) — Fun"*(C, D)

- thisis @ +— ¢ o F

-7 :id ~ F induces ag := ®(n) : P~ P o F

— since ® inverts Wr we know that ®(n) is equivalence

— get equivalence a : id — L* 04* : Fun""*(C, D) — Fun"#(C, D)

— components ag

consider i* o L* : Fun(F'C,D) — Fun(FC, D)
- this is functor ¥ — ¥ o Fipc
- have transformation 9 pc : idpc ~ Fipc : F'C — FC
— this is equivalence
— get equivalence Sy := V(npc) : ¥~ Vo Flpc
— get equivalence 8 : id — ¢* o L* : Fun(F'C,D) — Fun(FC,D)
— with components [y
Lemma 3.13. If F is left-exact, then the localization { : C — C[W '] is left-ezact
Proof. W is closed under
- pull-backs

- 2-out-of-3
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]

Lemma 3.14. If C is symmetric monoidal with bi-left exact ®, and F = — Q@ D for some
object D, then ( : C — C[Wy"] is left-ezact symmetric monoidal.

Proof.

fin Wg

- C' any object
-DCeof)~C(D® f)

— (D ® f) is equivalence since f € W
—hence D ® (C'® f) is equivalence
—hence C® f € Wg

conclude: ¢ is symmetric monoidal

in C[W]

- show: F ® — is left-exact:

T
B——C
- use model F'C
- all objects in FC
— extend to pull-back in C
B——C

-since F' = — ® D is left-exact have P € FC
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- square is pull-back in F'C (since latter is full subcategory)

is also pull-back in F'C

G -locally compact, second countable

L*(G) - has left-regular representation
- is separable if G is second countable

- define K := K(L*(G) ® (*) with conjugation action

Definition 3.15. A morphism f : A — B in GC*Alg;" is called a Kg-equivalence if
fROKg: AR Kg — B® Kg is an equivalence.

V' - Hilbert space with unitary G-action
- K(V) in GC*Alg™ - compact operators with G-action by conjugation

- V' — V' unitary embedding - induces morphism K (V) — K (V') in GC*Alg™

Lemma 3.16. If V is non-zero and V' is separable, then K(V) — K(V') is a Kg-
equivalence.

Proof.

Ko = K(L*(Q)) @ K(£?) - is K-stable

V' — V' unitary embedding of separable Hilbert spaces (no G-action)
- will show: K (V) — K(V') is Kg-equivalence

—use K(V)® K — K(V') ® K is isomorphic to left upper corner
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- K(V) K® K - K(V')® K ® K is homotopy equivalence

*USGKGgKg(X)K@K

(V, p) - separable Hilbert space with G-action
-V ® L*(G) = L*(G,V) mit action (g - f)(h) = pyf(g~'h)
- construct equivariant unitary: ¢ : V ® L*(G) = Res® (V) ® L*(G)
—6: [ (b o f()
— write action on target as g o f for the moment: (go f)(h) = f(g'h)
- check: (g0 ¢(f))(h) = pn-1f(g7"h) = (g - f)(h)
- conclusion:
K(V)® Kg =2 ResSK(V) ® K¢
for unitary embedding V' — V' of unitary representations on separable Hilbert spaces
- K(V)® Kg — K(V') ® K is isomorphic to Res K (V) ® Kg — Res{K(V') @ K¢

- is equivalence

F: GC*Alg™ — D - functor

Definition 3.17. The functor I is called G-stable if for every equivariant unitary embed-
ding V- — V' of separable Hilbert spaces the induced map F(A® K(V)) = F(A® K(V'))

18 a equivalence.

write Fun®(...,...) for G -stable functors

define K¢ = K((C & L%(G)) ® (?)

-C—>Co = (CaL*G) @2+ L*G)® (* induce

-C— K = Kg + Ke

—FZ:—®KG
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—FA’Z:—®IA{G

- get zig-zag

n:id%Zﬂ—F

Lemma 3.18. F(n) is an equivalence

Proof.

Definition 3.19. We define the Dwyer-Kan localization
Lg. : GC*Alg,)" — Lk, GC*Alg™

at the Kqg-equivalences.

set Lk, := Lk, o Ly, : GC*AIg™ — L, C*Alg)"

Corollary 3.20. Assume that G is second countable.
1. MapLKGGC*Alg2“<A7 B) ~ (Hom (K¢ ® A, K¢ ® B)

2. Lk

o s left exact.

3. Lk, is symmetric monoidal and induced tensor product on Ly, C*Alg," is bi-left-
exact

4. For every stable infty category D we have an equivalence
L} k., - Fun(Lg,GC*Alg)", D) = Fun™“(GC*Alg™, D)
Proof.
1. [Lemma 3.12]
2. Lemma 3.13]
3. [Lemma 3.14]
4.

any functor which inverts Kg-equivalence is G-stable:
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-use AR K(V) - A® K(V') is a Kg-equivalence

- Ly k., is G-stable

any homotopy invariant G-stable functor F' inverts Kg-equivalences

f:A— B - Kg-equivalence

A— A0 Kg+— A® Kg

bl

B——B® Kg+— B® K¢

- F' inverts horizontal arrows

- hence F' inverts left vertical arrow f

Lj k. : Fun'*(GC*Alg}*, D) = Fun™*5"(GC*Alg™, D)
Lk, - Fun,,, (GC*Alg;", D) = Funi™ (GC* Alg™, D)

(lax lax

Li . - Fun(} (GO Alg}", D) 5 Fun{/s®5(GC* Alg™, D)

Proposition 3.21. Lk, C*Alg," is semi-additive

Proof. same proof as for non-equivariant case

Lemma 3.22. Lg,C*Alg," has and Ly, k., preserves all countable coproducts.

Proof. L is Bousfield localization

- preserves all coproducts

for 7 countable:

- LK(]_LE[ Aj) ~ LK(@z‘eI A;)

- Ke® @, Ai = D Ko ® A;
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(Homy (Ko @ @ Ai, K¢ ® B) ~ (Homy(K ® @) Ko ® Ai, K¢ @ B)
i€l el
(Hom,(K ® | |Ke® Ai, K ® Kg ® B)
el
= ][ Hon(K © Ko ® A, K © K¢ B)
el

=[] tHom,(Ke ® Ai, K¢ @ B)

i€l

12

if G is compact

- have C — L?*(G) @ 2
— 1+ const ® e
—gete: C— K¢

Proposition 3.23. (Kg,¢€) is tensor idempotent in GC*Alg,"

Proof. C+ - complement of C in L?(G) @ (2

(LA(G) o 4 o (LA(G) ® )

Il

G FeCte (L*(G)x 7P
L(G)@ e L*(G) @

12

LYHG) @ 2 ——— [}(G) ® 2 & LX(G)) @ £°

I I

L*(G) ® L*((—0,0]) —— L*(G) ® L*((—00,1])

find family of isometries U, : L*((—o0,0]) — L*((—o0, 1]) interpolating from the inclusion
to unitary

o = w (=) Ujw : Kg — K ® Kg

Yo = €c
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¢1 is isomorphism

]

Corollary 3.24. If G is compact, then Lk, : GC*Alg," — Lk, GC*Alg)" is a left
Bousfield localization.

Corollary 3.25. Lk, GC*Alg," has all coproducts and Ly, k., preserves coproducts.

3.2.2 Descend of functors

all groups second countable

restriction:

-H—=d

- Res% : GO*Alg)™ — HC*Alg)"

Lemma 3.26. Res$; descends to Res% : Ly, GC*Alg" — Ly, HC*Alg}".
Proof. - want to show: L, o Res% sends Kg-equivalences to equivalences
- equivalently: this functor is G-stable

-V — V'’ - embedding of G-Hilbert spaces

i K(V) = K(V')

-ARI AR K(V) - A® K(V') induced map

- Res% (A ®14) ~ Res% (A) @ Res% (1)

- Res (i) is K (Res$(V)) = K(Res% (V"))

— is induced by Res% (V') — Res% (V') - isometric inclusion of H-Hilbert spaces

- hence Lg, o Res$ (A ®1) is an equivalence

induction

- G a closed subgroup of L
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- generalize |Lemma 3.6

Lemma 3.27. For A in GC*Alg™ and B in LC*Alg™ and 7 € {min, max} we have an
1somorphism
Ind%(A) ®; B = Ind%(A @, Ress(B)) .

Proof. same as
- have canonical map Ind%(A) ® B — Ind5(A ® Resg(B))

— must show injectivity and surjectivity

-use f = (L3 1— (1da ® 8) f(l) € A® B) in order to identify
- Cy(G, A® Res’(B))C = Cy(G, A ® Rest(B))°

- this preserves supports

~ restricts to: Ind4(A ® Res&(B)) = Ind(A ® Resl(B))

- then apply

]

Lemma 3.28. Assume that L is second countable. The functor Indk : GC*Algh" —
LC*Alg" descends to a functor Indk : Lg GC*Algh" — Ly, LC*Alg)".

Proof. want to show: Ly, o Ind% sends Kg-equivalences to equivalences

abbreviate I := L, o Ind% : GC*Alg)" — Lg, LC*Alg)"

- F:= F(— ® Resk(KL))
~Fe~(—®Kp)oF
- F:= F(— ® Resk(K}))

~F~(—®Kp)oF
- have zig—zagF—>F<—ﬁ

~ by [Lemma 3.27]is equivalent to F — (— ® K)o F + (—® K)o F

— these maps are equivalences
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now use Res5(Kp) & K¢ - see below

- F obviously sends Kg-equivalences to equivalences

- Res&(L3(L)) = L*(G) ® 12

— L — L/G has measurable section s

— here we need that L and L/G are polish spaces
— this is true since separable locally compact Hausdorff spaces are polish

— then apply the measurable section theorem to the image of the map L — L/G X L,
[ — (eG,1) and the projection L/G x L — L/G

— this image is universally measurable

measurable G- isomorphism
-GxL/G— L, (9,lG) — gs(IG)
— induced measure p ® v for Haar measure p on G and some measure on L/G

- L*(L) ¢ [*(Q) ® L*(G/L,v) = L*(G) @ *

crossed products

te{-r}
Lemma 3.29. If A is in GC*Alg™ and (V,p) is a G-Hilbert space, then we have an
1somorphism

Axr GRResT(K(V) =2 (A0 K(V)) % G .

Proof. since K(V) is nuclear do not have to specify ®
for 7 = —

- use ®ma$

C(G,A® K(V)) S C.(G, A® ResC (K (V)))
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- f = (g fl9)(1d® py))
— isomorphism of *-algebras
—inverse: f— (g f(g)(1d® py-1))

— use then [Wil07, Lem. 2.75] or

for x =17
- use @min

— use same isomorphism of x-algebras as above

— apply

~ ¢ : A— B(H) injective to define ¢ : A x, G — B(L*(G, H))

—use ¢ : C\.(G, A) — B(L*(H)) and K(V) — B(V) to define minimal tensor product

~¢p®id: A®Rest(K(V)) = B(H®V)
- use this to define (A ® Res®(K(V))) %, G via rep on L*(G,H ® V)

~use L2(GLHR V)X (G H)QV

- conclude isomorphism above is isometric

Example 3.30. Assume: ¢ : G — U(M(B)) representation
- By =04 — 041
- makes B € GC*Alg™

Lemma 3.31. For A in C*Alg™ and (?,!) € {(—, max), (r, min) } we have an isomorphism
(B & A) Ao G= RGSG(B) & (A Ao G)

Proof. C.(G,A)® B — C.(G,A® B)

-f®b—= (g (1da ®og-1)(f ® D))

38



- induces isomorphism

]

Lemma 3.32. The functor — x» G : GC*Alg," — C*Alg;" descends to a functor
— X9 G : Lg,GC*Alg)" — L C*Alg)".

Proof. abbreviate F := Li o (— X7 G) : GC*Algi" — L C*Algp"

- consider isometric embedding of separable G-Hiilbert spaces V' — V'
- must show F(A® K(V)) - F(A® K(V')) is an equivalence

use [Lemma 3.29]

-F(A® K(V)) = F(A) @ ResC (K (V)) is equivalent to

~ F(A) @ Res{ (K (V)) — F(A) ® Res{ (K (V"))

— this is equivalence by stability

O
Lemma 3.33. If H is closed in G and G/H is compact, then we have an adjunction
Res$; : L, GC*Alg™ < Ly, HC* Alg™ : Coind§, .
Proof. adjunctions descend if functors do m

Lemma 3.34. If H is open in G, then we have an adjunction
Ind$ : L, HC*Alg)" = Lg . GC*Alg)" : Res; .
Proof.
start with description of unit and counit
¢:1id — Res% o Ind%
- €4 : A — Res% o IndG(A)

- | aga ge H
- eala) = xu(g)agra = { 0 else

-1 : Ind% o Res% — id
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- np : Ind%(Res%(B)) — B
— Ind$(Res$ (B)) € Cy(G, B)!
— invariance condition f(gh) = Br-1f(9)

— G-action by (¢'- f)(g9) = f(9""'9)

— Gy(G,B)" 5 Cy(G/H, B)

— [ (gH = Byf(9)

— restricts to Ind% (Res%(B)) = Cy(G/H, B) = Cy(G/H) ® B

— G-action diagonally

— Cy(G/H)® B — K(L*(G/H))® B
— functions act by multiplication operator
— multiplication operators by Cy-functions are compact by discreteness of G/H

— np : Ind%(Res% (B)) = Cy(G/H)® B — K(L*(G/H))® B~ B

check triangle equalities

€ResC (B)

Resg(B) A Resg(Indg(Resg(B)))

(9 = xu(g)By-10)

(9 = xnu(9)8yB4-10)

(9 xu(g)b)

X @b € Res$(K(L*(G/H)) ® B)
b € Res%(B)

[

T 1

- the last map is left upper corner inclusion
- it follows that Res% (np) o €ResS () ~ 1dResti ()

M1naG (A)

) Ind% (ResS (Ind%(A))) 5™ 1ndG (A)

G
Ind% (A) fndji{ca
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(g (1= xa(Day-1f(g))) € Indfj(Resf (IndF(A)))
(g (= xu(g  Dag-1)-1£(9) € Co(G/H) @ Indf(A)
= (g (L= xulg ') f(1) € Co(G/H) @ Indf;(A)

= Y xku®xenf € K(L(G/H)) ® Ind§j(A)
keG/H

((g— flg)) € Indfj(A)) —
=

must still compose with
K(L*(G/H)) ® Ind%(A) = K(C® L*(G/H)) ® Ind$(A) < Ind%(A)

- denote embedding i : K(L*(G/H)) — K(C® L*(G/H))

~pin K(C&® L*(G/H) projection onto summand C

—i(xzr) € K(C® L*(G/H)) - one-dimensional projection

— choose u € K(C & L*(G/H)) one-dimensional partial isometry such that upu* = i(xz)

— define uy, := ku for all k in G/H

— uppuy, = i(Xem)

— family of g-equivariant homomorphisms A — K (L*(G/H)) ® Ind%(A)

[ Z (cos(gt)2i(XkH) + sin(gt)Qp + cos(gt)) sin(gt)(uk +u})) @ xkuf

keG/H

—t=0: get Zkeg/H XkH @ Xkn |

—t=1lget f>pRf

conclude:
e .
N1na¢ (A) © Indj(€a) =~ 1d1ng¢ (a)

note: this argument needs homotopy and stabilization
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3.2.3 Murray von Neumann equivalence and weakly equivariant maps, Thomsen
stability

f: A — B - amorphism in C*Alg™

- consider v in M (B)

— assume: u is partial isometry

— f(=)oor = f(-)

— then get new homomorphism v*f(—)v: A — B

— call this the conjugated homomorphism

f,g: A— B

Definition 3.35. We say that f and g are Murray-von Neumann (MuN) equivalent if there
exists a partial isometry v in M (B) such that fov* = f and v* f(—)v =g(—): A — B.

Lemma 3.36. If f and g are MvN -equivalent, then we have an equivalence

Lk (f) = Lnk(g) -

Proof.

b—(b,0)

B Maty(B) is equivalence in LxC*Algp"

- consider compositions:

fa0: AL B yaty(B)

—g30: 4% B2 yat,(B)

— suffices to show f&0~g®0

. v 1—ov* \ .
consider u := ( vy — 1 - ) in Maty(M(B))

- is unitary

-u(fe0)u=(g@0)
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- 4 is homotopic to lyat,(ar(B))

— here is a homotopy

B ( ( cos(Zt)v 1—(1- s1n(§t))vv ) is homotopy from u to ( 01 )

2
1 —sin(§t))v*v — 1 cos(5t)v* -1 0

— this can further be connected with lyae,(a(B))

(A, ), (B, ) in GC*Alg™

- usually write A, B

f A — B morphism in C*Alg™
g fi=By0foay

- conjugation action on Homg«p1gni (A, B)

f: A — B morphism in GC*Alg™

- means f is equivariant g - f = f

Definition 3.37. A cocycle on B is a continuous map G — U(M(B)) (strict topology on
the target) such that B(og4)on = ong for all h, g in G.

(hg)- f = OhgfOhg
h-(o4foy)
Bu(og)onfarBu(oy,)

>

—

S

-
I

if = id, then o is an action of G°P

Definition 3.38. A cocycle 0 on B extends f to a weakly equivariant map if g - f(—) =
0gf(=)oy forall g in G.

(A, ), (B, ) in GC*Alg™
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- f: A — B equivariant
- v isometry in M(B)

— vt =lum

—pi=0v

—By(p) =pforall gin G

- fp=1r

Lemma 3.39. v*f(—)v extends to a weakly equivariant map with cocycle

g0, := Bg(v*)v . (3.1)

Proof.

unitaryness

- U;Ug = U*Bg@))ﬁg(?}*)?} = U*ﬁg(p)v = U*pv = 1M(B)

— cocycle

= Bn(By(v7)0) Br(v*)v = Bpg(v*)pv = Fng(v*)v

(v*f(—)v,0) is weakly equivariant morphism

- Bg(v*f<ag—1a>v) = Bg(v*ﬁg_l (f(a))v) = Bg(v*>vv*f(a)vv*ﬁg<v)) = Ugv*f(CL)UO'g*
O

Lemma 3.40. A weakly equivariant map (f,o) : A — B functorially induces an equivari-
ant homomorphism A® Kg — B ® Kg.

functorial means: as long as composition is defined

Proof.
suffices to construct morphisms A ® K(L*(G)) — B ® K(L*(G))

- identify B ® K(L?*(G)) with B-valued convolution kernels b(g, ¢’) on G
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- (00')(g,9") = [ (g, 9V (d's 9" )1u(g)

- G-action: (hb(g,¢') = Bub(h~'g,h"'¢')
similarly with A ® K(L*(GQ))

define map A ® K(L*(G)) -+ B ® K(L*(G)) by

- a(gvg,) = O'gf((l(g,g,))a';/

— is homomorphism

—an(a(h™'g,h™"g")) goes to oy f(an-1(a(h™g, h™"g')))oy,

~

agf(an(a(h™ g,k g)))oy = 04Bu(Ba-1 fan(a(h™ g, 07" g"))))a,
= oyBu(on-1fla(h™ g, h7"g"))os-1)oy
= Bulon-1gf(a(h™ g, h7"g))o}-1)))

- conclude: A ® K(L?*(G)) — B ® K(L*(G)) is equivariant homomorphism

this is compatible with the partially defined composition

in order to see that we land in B ®@ K(L*(G))

- consider image of kernels a ® yx(g)xx(¢')

— K compact in GG

- goes to (g, 9') = aga0y xx(9)xx(9') € B

- approximate ogaoy, on K uniformly by locally constant functions

- the resulting kernel is obviously in B ® K (L*(G))

(A a), (A o) in GC*Alg™

Definition 3.41. We say that A and A" are exterior equivalent if id, extends to a weakly
equivariant map.
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Corollary 3.42. If A ane A’ are exterior equivalent, then we have an equivalence
Lh,KG (A) ~ Lh,KG (A/) m LKGC*Alg;Lm

note: the equivalence in the corollary above might depend on the choice of the cocycle
extending id 4

consider A = (A, «)

- consider G-action & on A ® K

Definition 3.43 (Thomsen). We say that & is compatible with « if there exists an
equivariant map A — A® K, a — a ® e, for a minimal projection e.

Proposition 3.44. If & s compatible with «, then & is exterior equivalent to v ® idg by
a cocycle o with o4(cy ® id)o; = ay and o4(a ® e)o; =a®e for all a in A.

Proof.

define oy := ). ay(1 ®e;1)(1 ®eq;)

0,04 = Z ®ej1)0y(1l® e ) Zag ®ei1)(l®ery)
Z ®ej1)ay(1®er)(1®er,)

(1®e1)(l®@e)(l®er, )

“M

-Opg = 0ng(l®e1)(1®er,)

an(og)on = @h(z ag(1®ein)(1®er;)) Z an(l®ejn)(1®@ ey )

= Zdhg(l X 6@1)&(1 X 61,1))(1 ® elyi)

= Z ang(l®e;r)a(l®e,;)
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o4(ag(a) @ ey)oy, = Z ag(1®ein)(1®er;)(ag(a) @ en) Z(l ® ej1)ay(1® ey ;)

(1@ er1) (1@ er)(ag(a) ®ep) (1@ enr)ay(l®er)

g(1® ex1)(ay(a) ®en)d,(1®@er,

9(1 ® ek,l) O
( )

ayla®enn)ay(l1®eq)
= dg a® €kl

I
Sy O

Il
[oN

]
Corollary 3.45. If & is compatible with «, then the map (A,a) — (A® K,&) is a

Kg-equivalence.

Proof.

(a—a®e)®idk

AR K ————— S5 (AQRK® Kg,a® ) Z(AQK ® Kg,a® idg ®{)

- second isomorphism induced by exterior equivalence (A ® K,a) - (A® K,a ® idk)
obtained from [Proposition 3.44]

- this equivalence preserves a ® e

- whole composition is left upper corner inclusion tensored with Kg

— hence a homotopy equivalence by stability of Kg

conclude: first map is homotopy equivalence

F:C*Alg™ — M

- F homotopy invariant

Definition 3.46 (Thomsen [Tho98|). F' is called Thomsen stable if it sends F(A, «) —
F(A® K, &) to equivalences provided o and & are compatible

Lemma 3.47. G-stability is equivalent to Thomsen stability.

Proof.
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- by |Corollary 3.45; a G-stable functor is stable in the sense of Thomsen

show: stable functor in the sense of Thomsen is Kg-stable
~ A — A® K¢ is Thomsen equivalence

-~ AR Kg — A® K, ¢ is Thomsen equivalence

K ~ KG K(éz,LQ(G)®€2) ~ KG®6 ng®KeL ~ K ®K
¢\ K(L2(G) @ 2,67 K(£%,0%) ~\ elKe etKgoKet )T 7€

- e - one-dimensional in K

— some action preserving this structure

— use here some identification K¢ ® K with K (no action)
— write A® Kg = (A, )

— A@ Kg= (A ®K,d)

— get Thomsen equivalence

f:A— B - Kg -equivalence

- use diagram

A— A0 Kog+— A® Kg

bl

B——B® Kg+— B® K¢

- F sends horizontal arrows to equivalences since they are Thomsen equivalences
- I sends right vertical map to equivalence since it is homotopy equivalence

— hence: F sends left vertical map to equivalence
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consider (A, a) in GC*Alg™
- pin M(A)Y - invariant projection
- (B,pap) in GC*Alg™

-i: B — A invariant inclusion
Definition 3.48. B is called a corner of A.
Definition 3.49. It is called full if ApA = A.

Recall: A separable implies A has strictly positive element

Proposition 3.50. If A admits a strictly positive element, then there exists a weakly
equivariant isomorphism v : B® K — A® K. Furthermore Ly k. (v) >~ L k. (4).

Proof.

apply [Bro77, Cor. 2.6]
~(BoK)=(peo)A2K)(po1)

- find isometry v in M(A® K) with v*o =p® 1

v —0v:BOK S AQK

apply

- get canonical extension by cocycle to weakly equivariant map

1 and v are Murray von Neumann equivalent
-1® 0 and v & 0 are conjugate by unitary «
- u is homotopic to 1

- can extend whole homotopy from ¢ @ 0 to v & 0 to homotopy of weakly equivariant maps

(use explicit formula for cocycle (3.1)))

- get homotopy of equivariant maps Maty(A) ® Kg — Mate(B) @ K¢
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Corollary 3.51. If A is separable, then a full corner inclusion B — A induces an
equivalence Ly k. (B) — Lk, (A).

3.2.4 Hilbert C*-modules and bimodules

B - C*-algebra

- E - C- vector space

— consider the following additional structures:

— B-right module structure

— B-valued scalar product: (—, —): E®c £ — B
— (be, ') = b*(e, )V for all b,b' in B, e, e’ in E
— (e, ¢) = (¢, ¢e)"

— (e,e) >0

1/2

— define seminorm: |e|| := ||{e, €)||

— check: semi-norm properties (exercise)

- so far: (F,(—,—)) - a pre Hilbert B-module

Y

Definition 3.52. (E, (—,—)) is a Hilbert B-module if (B, || —||) is a Banach space.

set [ := (E, E)

-isideal in B

Lemma 3.53. EI C E is dense

Proof. (e —ei,e —ei) = (e, e) — (e,e)i —i*(e,e) + i*(e, e)i
- can make this as small as we want

- take 7 in approximate unit of I
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A:E— FEamap

Definition 3.54. A is adjointable if there exists A* : E — E such that (Ae,e’) = (e, A*e)

for alle,e’ in E

Lemma 3.55. If A is adjointable, then A is linear, B-linear and bounded (in the sense

of Banach spaces) and A* is uniquely determined by A.

Proof. uniqueness: exercise
- linearity: exercise

- boundedness: use closed graph theorem

B(E) - adjointable operators on E

Lemma 3.56. B(E) is a C*-algebra.

Proof. B(E) is closed in bounded operators on E
- % is involutive, isometric
- 1A Al = [1A]®

— Chauchy-Schwarz: ||{e, /)|I> < |lel|®|| f]|* (exercise)

— implies ||(Ae, Ae)||* < ||A*A||? < ||A||* for unit vectors e

— |IA]|? < ||A*A]| < ||AJ]? - hence equality

consider e, e’ in
- define C-linear map O, : F — E

— O (") :=e(,e")

—is B linear: O, (e"b) = e(€’,e"b) = e(e’,e")b = O, (e")b

— is adjointable:
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<@eje/ (e//>’ e/l/>

O, is called elementary compact

Definition 3.57. We define K(E) as the C*-subalgebra of B(FE) generated by the elemen-
tary compact operators.

Lemma 3.58. K(FE) is an ideal in B(E) and B(F) = M(K(FE)).
Proof. ideal: exercise

multiplier: see [Bla98| 13.4.1] O
Example 3.59. Example: B =C

- Hilbert C-modules are Hilbert spaces, B(E) and K (F) have the usual meaning

-note: the elements of K(F) are in general not compact in the sense of bounded operators
on a Banach space []

Example 3.60. B is Hilbert B-module
- (b, b) == bV

- B(B) = M(B) and K(B) = B

can form orthogonal sum of Hilbert B-modules

B" := @, _, B as Hilbert B-modules
K(B") 2 Mat, (B)

B(B") = Mat,, (M(B)) O

Example 3.61. can for direct sum of Hilbert B-modules
EoF

- scalar product (e @ f, e/ @ f') := (e, ) + (f, f)
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Example 3.62. have maps B" — B!
- form Hp = colim,ey B" in right B-modules
- get scalar product

- Hp := completion of Hp

elements: (b;);en with > bib; converges in B

- norm: | (bi)ienl|® = || 32 ;e Ui bil

note: || >, cn bibsl| < || 2o Ibi]|? but in general not equal

Example 3.63. X -locally compact space
(V, h) - euclidean vector bundle

[o(X, V) is right Co(X)-module

- (v, v")(x) := h(v(z),v'(x)) is scalar product
- B(To(X,V)) = T'p(X,End(V))

- K(Io(X,V)) = I'y(X, End(V))

- idy is compact if and only if X is compact

Example 3.64. can talk about adjointable operators A : E — E’

0 0

40 ) :E® FE — E & E’ is adjointable

- equivalently: (
here is an example of a non-adjointable bounded B-linear map
B := B({?) is B-Hilbert C*-module

- K := K(£?) is submodule

- A: K — B is isometric inclusion of right B-modules

Claim: A is not adjointable.
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everything has an equivariant version
G - action on F
-0 : G — U(B(F)) homomorphism

- strongly continuous: g — ag(e) continuous

Lemma 3.65. The action G — Aut(K(FE)) (by conjugation) is continuous.

Proof. Exercise!
Definition 3.66. A Hilbert-B-module is called full, if (E, E) is dense in B.

Example 3.67. E - equivariant Hilbert B-module
- I - ideal in B generated by (E, E)
- is invariant

E is full equivariant [ Hilbert B-module
Lemma 3.68. B(E) = B(E))

Proof. (u;) approximate unit of [
-Ain B(E|])
-foralle,e’ in £, bin B

(e, A(€'b) — A(e')b) = 1lim{e, A(€'b) — A(€')b)u;
= lim(e, A(e'bu;) — A(e')bu;)

- shows: A(e'b) = A(e')b

Example 3.69. can consider left Hilbert A-modules in analogy

- start with Hilbert B-module F
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- is left K(E)-module

- define K (FE)-valued scalar product (e, e') := O, o

- check (Ogr ere, €') = Ounien o) o0 = Ot 1O ot = O (e, €')
— (e,e) = O, is positive (exercise 7)

— show ||f.. —t]| <t

~ e e)ll = [1Be.ell = llell* (exercise ?)

conclude: FE is left Hilbert K (F)-module

- compatible scalar products:

(676/)6// — @6761(6”) — e<e/’ 6//>
- full by construction
Construction 3.70. follow [BGRTT]
A, B - G-C*-algebras
- X - (right) B-Hilbert module and (left) A-Hilbert module

/ — x<xl7 x”>B

- compatible scalar products (x, ') g2’
- define X* - (B, A) - bimodule

— underlying vector space same as X with conjugated complex structure:
— operations: (z,a) +— a*z, (b, z) — xb*

— conjugated scalar product

A X
X* B

(a x a '\ _ ([ ad+(x,y)a ax’ +ab
,product. < y b > < y/ b ) - ( ya/+by/ bb' + <y7£€’>B

- define linking algebra C° := ( ) in GC*Algg,
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a T a/ x/ Cl” x//
(GGG )
B ad' + (x,y)a  ax’ + b a” x"
- ya/ + by/ bb/ + <y7x,>B y// b//
B (aa/ _"_ <l.’y/>A)a// _"_ <a/x/ +$b/,y”>A (ax/ _"_ xb/)b// _"_ (aa/ _"_ <[B,y,>A)yH
B (ya' +by')a”" + (b0 + (y, ") p)y" (B0 + (y, 2")p)b" + (ya’ + by’ ")

a T a/ II a/l x//

() (73 ) G )
B a T a/a// + <I/7y//>A x/b// _|_ a/y//
- y b y/a// + b/yll b/b// + <y/7l,//>B

( a(alal/ + <I'/,y”>,4) + <x7y/a// + b/y//>A a/(m/b// +alyl/) +x(b/bll + <y/7x//>B> )

look at right upper corner: here need compatibility of scalar products for associativity

involution:

(o) =(% %)

- consider representation of C° on X @ B by matrix multiplication
- induces seminorm

- define C' as closure

0 0

clear: B = < 0 B

) C C as corner

00
: — 9
full.C(O 1)0 C

<33',Z/”>A l‘b// )

these are the elements of the form ( by b

- need: A-valued scalar product is full

- XB C X is dense,
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assume: A, B - separable, X separable

- then C' separable

-AX ( ,(4)1 8 ) — C' is homomorphism (not necessarily injective)
Proposition 3.71. If X is a (A, B)-Hilbert bimodule such that

1. X is full as left A-Hilbert module

2. A, B, X are separable.

Then we get a morphism Ly k.(A) = Ly (C) & L. (B)

]

Definition 3.72. An equivariant separable (A, B)-Hilbert bimodule is called an equivariant
Morita bimodule if it is full as right B-module and as left A-module.

Corollary 3.73. An (A, B)- Morita bimodule induces an equivalence in Ly . (A) ~
Ly k. (B).

E - a separable right B-Hilbert module
- then it is also (K (E), B)-Hilbert bimodule
- is full as K (FE)-module

- is full as a I-rightmodule for [ := (F,| F)

- by [Proposition 3.50]

Proposition 3.74. If E is a separable (A, B)-Hilbert bimodule such that: A — K(F),
then we get a morphism

B, Lixg(A) = Ly ko (K(E)) = Ly g (X) € Ly ke (I) = Lk (B) -
Construction 3.75.
E - (A, B) - Hilbert bi-module
F - (B, C)-Hilbert bimodule

define £ ®p F
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-FE ®a]“31g F as vector space

- left action by a: a(e® f) :=ae® f

- right action by C: (e ® f)c:=e® fc

- C-valued scalar product (e ® f, e’ @ f') := (f, (e, ) f")

- form completion £ ®p F with respect to induced semi-norm

- show: operations extend by continuity

Lemma 3.76. K(E) 22 K(F &g F)

Proof. exercise®

E - (A, B) - Hilbert bi-module

F - (B, C)-Hilbert bimodule

Lemma 3.77. We have L(F) o L(E) ~ L(F ®p E) : Ly k,(A) = Ly k.(B).
Proof. need a good argument!

Example 3.78. in this example translate two-morphisms into homotopies
¢p:A— A : B— B - algebra homomorphisms

E:A— A E' :B— B - bi-modules

- can form new bimodules:

AL A E B gives Elod: A— B

—A£>B£>B’(byE@BB’)—giveS¢oE:A—>B'

Yok

/_\

L. (A)\N/Lh,KG(B/)

E’o¢

- I': E — E’ structure preserving iso in obvious sense
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- induces homotopy £ ®p B' — E' 0 ¢

— form mapping cone C([0,1],E) o ¢ ®orpo E
—1is (A,C([0,1], B'))-bimodule

— evaluation at 0 is o

— evaluation at 1is F' o ¢

Example 3.79. (A, «a), (A,id,) in GC*Alg™

-0:G— U(M(A)) homomorphism

- assume: (ida,0): (A, ) — (A, ida) weakly equivariant map
- consider vector space A := A with:

— G-action: a — og4a

— A is right (A, 1)-Hilbert C*-module

— action aa’ is product in A

*x o/

— scalar product (a,a) := a*a

— (A, a) - K(A) equivariant a — (a’ — ad’)
— equivariance o4a0,-1 = o,(a) by assumptions

— is isomorphism

Ais (A, «a), (A, id)-Morita bimodule
Lemma 3.80. L(A) ~ L(idy, o)

3.2.5 Imprimitivity and some adjunctions

H C G - closed subgroup
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Theorem 3.81 (Green’s imprimitivity theorem). For ? € {r, =} there is an equivalence

of functors
— X7 H — Ind% (=) - G

from Ly, HC*Algyy, ), — LxC*Algg ).

Proof. A in HC*Alg™

- define Morita (Ind%(A) 3, G, A x, H)-bimodule X (A)

- X (A) :=C.(G, A)

— left action: (bz)(s) = [, b(t, s)z(t ™ s)Ac(t)uc(t), b(t,s) € Ce(G, Indf(A))
— right action (za)(s) = [, an(z(sh)a(h™")Au(h)"uy(h), a€ C(G,A)

= 106 (), (T 9) (8, 8) 1= D)7 [ (@ (th)y(s™"th) ) (h)

— {2,y ) aserr (h) = A ()72 [ (™) an(y(t™'h))ue(t)

form closure with respect to induced norm

- continuous extension of actions and scalar products

- show Morita property

for history and references see discussion in [Ech10] ]

Theorem 3.82 (Green-Julg theorem). If G is compact, then we have an adjunction

RGSG LKC*Algsep h S LKG GC*Algseph r=xG .

Proof.
unit: €4 : A — Resg(A) %, G
- a + const, in C(G,A) C C*(G, A)

— use that Haar measure is normalized to see that this is homomorphism

description of the unit as bimodule

- more general:
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— B in GC*Alg™

— F a equivariant (right) Hilbert B-module
— action map y

— form E - a B x G-Hilbert module

— right action: eb:= [, vs(ef(s™"))u(s)

— B x G-valued scalar product: (e, €')(s) = (e, vs(€'))

apply to A with trivial action
- A becomes right A x G-module A

— A induces morphism €4 : Lpk(A) — Resg(LpxA) x, G

argument that this is the case

- (A, A) =: I - constant functions in A x G
—isideal in A x G

— linking algebra C' for (A, I) is Maty(A)

— A — C left upper corner

— I — C right lower corner

—induces A — I (identity on A)

— A thus induces A — A x G given by inclusion of T

— this is precisely the unit

counit:
- L*(G, B) becomes equivariant (B x G, B)-bimodule
— B-valued scalar product: (h,h') := [, Bs(h(s™")*W(s))p(s)

— right B-action: (hb)(t) = h(t)5,(b)
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~ left B x G-action: (fh)(t) = [ f(s)Bs(h(s7't))u(s)
— check: goes to K(L*(G, B))

— G-action o4(h)(t) = f(ts)

~Resa(B x G) — K(L*(G, B))

— left convolution commutes with right translation
L*(G, B) induces counit map np : Resqg(B x G) — B in Lg,GC*Alg)"

check triple identities

Resg(ea) "Resg

Resg(A) Resg(Resg(A) %, G) eeth, Resg(A)
- a + const, — const, (convolution) in K (L*(G,A)) 2 A® K(L*(Q))

— this is left upper corner inclusion with projection onto the G-invariants

B x G 2% Resa(B % G) x G 22% Bw G

- write this as tensor products of bimodules

NResq(BxG) X G 0 €pya 1s given by

—

Resg(B % G) @Resg(Buayna (LG, B) x G) = ...

this represents identity

Theorem 3.83. If G is discrete, then we have an adjunction

M : L GCTAIE™ | S LigC*Alg™ | : Res

Proof. unit: €4 : A — Resg(A Xpax G)
-a+— ad,

- weakly equivariant with cocycle: o, := d,
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- 6g(ade)dy-1 = 04(ady—1) = ay(a)d.

— get map €4 : Lh,KG (A) — Lh,KG (RGSG<A AN max G))

can be more explicit: is useful for calculations

- g + 6, is homomorphism G — U(M (A Xmax G))
— get (A Xyay G,0) in GC*Alg™

— A = (A Xy G, 0) is equivariant

— €4 - Lh,KG (A) % Lh,Kc;(A max G 5) L(—E> Lh KG(RGSQ(A N max G))

— F is (A Xmax G, 9), Resg (A Xpmax G)) -bimodule as in [Example 3.79

— get bimodule Resg(A Xpax G)

counit: np : Resg(B) Xmax G — B

- trivial G-action and left multiplication on B extends to B X ., G-action on B
- get B - a (Resg(B) Xmax G, B)-bimodule

- induces a map Resg(B) Xmax G — B

[ Y f(9)

check triple identities:

€Res(B)

Resg(Resg(B) Xmax G) M Resq(B)

b Y (B0.)(s) = b

Resq(B)

- this is obviously the identity

>4Irla/)( 77A Il]axG
A sy, G S2meG Resa(A Xmax G) Mmax G =% A Moy G

see e.g. [Parlh, Sec. 3]
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€AXmaxG EXmax P AXxmax G
A ><]ma‘xG( ? (A >4Inax G, 6) ><]max G—> eSG’(A ><]max G) ><]max G—>A >4maxc':

Xlw

Resg (A Xmax G) Mimax GEM eS¢ (A Xmax G) Xmax G

AXmaxG

¥ is given by

- E' is like E but for trivial action

- the same map as in also induces a two-morphism from E X, G to
E" Xax G o ¥ making the diagram commute

— use to produce homotopy
- o(f)(g, 1) = (0n - (f(h)de))(9)de = f(h)on(g)
= NG (D)9, 1) = e @) (g, 1) = f(9)

3.3 Forcing exactness and Bott
3.3.1 The localization L,

I'e {ex,se,splt}

want a left exact localization

Ly : Lg GC*Alg," — LKGGC*AlgI,fj
- such that

nu

L 1
Liig, : GCFAlg™ 25 GO Algi® 5% Ly GC* Al & Ly, GC* Alg,

sends !-exact sequences of C*-algebras to fibre sequences

- in case | = se, splt: require the corresponding splits equivariant

consider !-split exact sequence of G-C*-algebras
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05 A= B oS50

form diagram:

W, - set of morphisms Ly, k. (¢) for all -exact sequences as above with C' contractible

- W, - closure of VV under 2-out-of 3 and pull-backs

Definition 3.84.
Ly : Lg GC*Alg;" — LKGGC*AIgﬁ

1s the Dwyer Kan localization at W).

Proposition 3.85.
1. Ly is left exact.
2. Ly symmetric monoidal.
3. ® on Lg,GC*Algy') is bi-left exact.

4. Lr,GC*Algy) is semi-additive and Ly preserves finite coproducts.
Proof. same as non-equivariant case O

universal properties:

- for any left exact oo-category D:
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L}, koo Fun'™(GC*Alg)), D) = Fun™“>"*(GC* Alg™, D)

- for any symmetric monoidal left exact co-category D:

Ly ko : Fun X (GC* Algys, D) 5 Fung %" (GC* Alg™, D)
there is a separable version of all that
Remark 3.86 (Descend of functors).
the functors Resé, Ind$% and — x» G preserve suitable exact sequences but:
- it is not clear that they preserve Schochet fibrations
- therefore not clear that the descends to Ly, GC*Alg;" are left-exact
- they perserve W,
- but not clear that they preserve W),
—so do not expect that these functors descend to Lg,GC*Algy',

- fortunatlely this is intermediate step [

3.3.2 Bott periodicity and KK& and E¢

sep sep

have Toeplitz extension

0= K—=T—=C(S") =0

- no G-action

- reduced Toeplitz extension

0—>K—=Ty—SC)—=0

Lemma 3.87. If F': GC*Alg™ — M is homotopy invariant, G-stable, split-exact and
takes values in groups, then F(Tg) ~ 0.

66



Proof. same as in non-equivariant case O

l'in {ex, se}

- reduced Toeplitz extension is semisplit

- get eyt QLo 1(C)) = QL ke, (S(C))) = Lkt (K)) = Li w1 (C)

- Bay = Bci®A

for A in GC*Alg™:

Corollary 3.88. If ' : Li,GC*Alg; ) — M is left eract and takes values in groups, then

the boundary map E(Bay) : E(Q}A) — E(A) is an equivalence.

Proof. - consider F':= E(—® A)

- F(Bcy) = E(Bay)

- F of reduced Toeplitz sequence is F of 0 > K ® A - To® A — S(A) — 0
- is fibre sequence

- F' annihilates middle term

[]

Corollary 3.89. If A is a group in Li,GC*Algy'), then 84, QF(A) — Ain Ly, GC*Algy)
s an equivalence.

Corollary 3.90. We have a Bousfield localization
incl : (Lg,GC*Alg))¥ " S Lg ,GC*Algy OF

with counit B : QF — id.

have separable version

Definition 3.91. We define the oo-category

KK¢

sep,!

= (L, GC* Alglt)eou

and
2

* nu  Lsep,h * nu Lkg * nu Lsep,! * nu Qsep’! G
Kkeops : GO*AlG™ 200y GorAlg™ 256, 1 ot Alg™ B gorAlg™ | 2 KK

sep sep,h sep,h sep,h,! sep,!

67



Lemma 3.92. If F : GC*Alg™ — M 1is a homotopy invariant and semi-exact functor,
then it is Schochet ezxact.

Proof.

note: Schochet exact means: F' sends Schochet fibrant pull-back squares

— B

Schochet

Qe

—— D

to pull-back squares

- by stability of M: it suffices to consider case with C' = 0, i.e. Schochet exact sequences

assume: 0 -+ A — B — C — 0 is Schochet exact

- have diagram
F(A)—— F(B)—— F(C) .
(¢

e Jrw |

f)
F(j(f))—>F(Z(f))—>F(C)
F(Q(f))

- lower sequence is fibre sequence since mapping cone sequence is semi-exact and F' is
semiexact

Lj, sends both sequences to fibre sequences by Schochet exactness
- Ly(hy) is equivalence
- Ly(ey) is equivalence

- hence F(ty) is equivalence by homotopy invariance of F

the horizontal sequence in the diagram above are equivalent

- upper sequence is fibre sequence O
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consider
- ®7 in connection with localization ! € {se, ex}

- allowed combinations:

I\ ? | min | max
yes
yes

se
ex

yes
no

Theorem 3.93.

1. KKip. s a stable co-category.

2. kksep, is symmetric monotidal and ®- is bi-exact.

G,*
sep

3. Fun®(KK¢ , D) Fun™“*'(GC*Alg™, D) for any stable co-category D.

sep,!’

K
4. Fun{ (KK ,,D) ~" Fun ﬁai)cs (GC*A1g™,D) for any symmetric monoidal

(lax) sep,!
stable co-category D.

standard notation

G ._ G G . G
KKsep KKbep se kksep : kkbep se
G . G _ G
Ebep KKsep ex sep kkbep ex

3.3.3 Descend of functors

L — QQ sep, | 0] Lsep ! GC*AIgSep h — KKsep |
by construction: for any stable oo-category D

L* : Fun®(KKS, ;, D) = Fun'*'(Lk,C*Alghs ,, D) ~ Fun'(Lg,C*Algls . D

sep,!

use |[Lemma 3.92

- Fun'- which send (images of) !-exact sequences to fibre sequences

G — L - homomorphism
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RSG

LKL LC*Algsep [ — LKG C;1C’*‘A1gsep h

L G
lkkSep | lkkSep
L

- Rest @ Lk, LC*Algg, ,, — L GC*Algy,, , preserves -exact sequences

- L% o Resk € Fun'(L K, LO*Algly ;. D) sends -exact sequences to fibre sequences

Corollary 3.94. We have a left-exact descended functor

Res’ : KKsep, — KK¢

sep,!
H C G closed subgroup

HC*Algsep h —> LKG GC*Algscp h

lkkgp \ lkkgp |
5

Lemma 3.95. Indfl preserves !-exact sequences.

Proof. construct for any A natural retract:

Ind%(A) & Co(supp(x)) @ A 5 Ind%(A)

- consider function y € C(G)

~ [y x(gh)u(h) =1

— require that for every g in GG there exists a open U of G and compact K in H such that
xX(gh)=0for g e U, h¢g K

- define maps:

—a: fe (9 x(9)f(9))

=B fr (g [yanf(gh)u(h))
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— check H-equivariance: gh' — [, o f(gh'h)pu(h) = o1 [ oo f(gh)u(h)

— check retract: S(a(f)) = f

— [y a(h)x(gh) f(gh)u(h) = [ x(9)f(g)u(h) = f(9)

Co(supp(x)) ® — is preserves !-exact sequences

- a retract of a !l-exact sequence is again one

7 in {max,r}

Corollary 3.96. We have a left-exact descended functor Ind% : KK

X7 preserves contractibility and zero
-use (AR C(X)) % G=(AxG)®C(X)
- it preserves contractible algebras

—use Ind% (A ® C(X)) = Ind%(A) @ C(X)
— Ind%(0) =0

consider

Lk, GC*Algy" G, LrC*Algg,

lkksip,! J/kksep )

sep,! sep,!

- X+ in connection with localization ! € {se, ex}

- allowed combinations:
'\ ?| r | max

yes | yes
no | yes

se
ex

Lemma 3.97. — x; G preserves !-exact sequences.
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Proof. for ex and max:
0=-1—-A—-0Q—0

0 =1 Xpax G = A Xpax G = Q Xpax G — 0

C.(G, —) preserves exact sequences and takes values in pre- C*-algebras

- compl is left-adjoint and preserves push-outs
remains to show: I X . G — A Xpax G is injective
- every rep of I x*& G extends to rep of A x®8 @

for se:
split induces split of 0 — C.(G,I) — C.(G, A) — C.(G,Q) — 0
- split extends to split under completion

— needs more analytic arguments

Corollary 3.98. We have a left-exact descended functor — x G : KKipJ — KKgep1-
Corollary 3.99.

1. Green’s imprimitivity theorem: For H C G closed:

—x HS Indg(_) xo G KKE | — KKsGepJ :

sep,!

2. For H C G open and closed: We have adjunction

Ind$ : KKZ | S KKS | : Res§ .

sep,! sep,!

3. Green-Julg Theorem: If G is compact, then we have an adjunction

Resg : KKeepy S KKE |1 — x G .

sep,!

4. Dual Green-Julg: If G s discrete, then we have an adjunction

— Xmax G KKE | S KKepr : Resg

sep,
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3.3.4 Extension to from separable to all C*-algebras

Definition 3.100. We define:
KK := Ind(KK¢%

sep,!)

have canonical functor y : KKSGep’, — KK

Definition 3.101. We define:
Kkl : GC*Alg™ — KK

as the left Kan-extension

kk$ | G y G
C’*Alg;‘e‘lp —— KK, —— KK
incl kk'G\{
GC*Alg™

Proposition 3.102.

1. KK and kk, have symmetric monoidal refinements for @-.

2.
: Kk
]:_“lll’lCOhm(KK!G7 D) ~ FllIlh’Gs’!’Sﬁn(GC*Algnu, D)
for any cocomplete stable oo-category
3.

j Kk ‘
Funf5"**(KK?, D) & Fun ™" (GC"Alg™, D)

for any cocomplete stable symmetric monoidal co-category D.

standard notation
KK® := KK¢ . kk% :=kk®

se se
G . G G .__ G
EC, = KKS , o =k

want to extend functors

C - a functor from GC*Alg™ to HC*Alg™

- for A — B define C(A)°®) as image of C(A) — C(B)
- assume: C' preserves separable algebras

— then C(A)“®) is separable provided A is separable

73



Definition 3.103. We say that C' is Ind-s-finitary if it has the following properties:

1. For every A in GC*Alg™ the inductive system (C(A)°W)yc 4 is cofinal in the
inductive system of all invariant separable subalgebras of C'(A).

2. The canonical map (C(A))acya — (C(ANVN) e, a is an isomorphism in
Ind(HC*Alg™).

Lemma 3.104. Assume that C' preserves separable algebras and satisfies [Item 1. If C
satisfies one of:

1. C preserves inclusions
2. C preserves countably filtered colimits

then C' is Ind-s-finitary.

Proof. Argument in case 2.
consider an invariant separable subalgebra A’ of A

- gives the outer part of the following diagram

o) CAYe) (3.4)
\C(A//)L..
C(A) C(A)

- poset of invariant separable subalgebras of A is countably filtered

C preserves countably filtered colimits

- colimyic,, 4 C(A) = C(A)

— the left vertical arrow is the canonical inclusion into the colimit.
~let I be the kernel of C(A4’) — C(A)¢W
— I is separable

— I is the kernel of C(A") — C(A).
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—find an invariant separable subalgebra A” of A such that I is annihilated by C(A’") — C(A”)

— use here countably filtered and annihilate a countable sets of generators of I

get dotted arrow.
- existence of A” for given A’ shows:

~ the canonical map of inductive systems (C(A)) ac,a — (C(A)°@) 4c,., 4 has an inverse
in Ind(Fun(BH,C*Alg™)).

[BELD, Lem. 4.3] m

Lemma 3.105. If F' is some s-finitary functor on HC*Alg™ and C is Ind-s-finitary,
then the composition F o C is an s-finitary functor on GC*Alg"".

Proof. A in HC*Alg™

- must show: canonical morphism is an equivalence:

colin F(C(4) » F(C(4) (3.5)

Condition [3.103)[2] implies equivalence:

: ny = . nNC(A)
SERFEUAN = gy FEE™

Condition [3.103|[T] implies equivalence:

colim F(C(A)°™) S colim F(B')
A/gsepA B/gsepC(A)

F' is s-finitary: get equivalence

colim F(B') = F(C(A))

B'CeepC(A)
composition of these equivalences is the desired equivalence ({3.5]). H

Proposition 3.106. Assume
1. F preserve separable algebras
2. Figep descends to KKgep

3. F is Ind-s-finitary
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Then we have an essentially unique colimit- and compact object preserving factorization

Fsep
KKH | = KKe

sep,! sep,!

b

KK'H ,,,,,,, F> KK,G

Proof.
HC*Alg™ —£— GC*Alg™

HC* Alg™ 2, o>

sep

G
kle kksep ,

kk{
KK

sep,!

Y

KK P KKE

define F' by universal property of y : KKng — KK{

- F preserves filtered colimits

- must show that ”back face” of the cube commutes

Fsep
HCO*Alg™ —=2 GO* Alg™

sep sep

| >

HC*Alg™ —£— GC*Alg™

lkkH lkkc

KK o Fly KK

- outer square commutes by construction

- the two triangles commute

- kkY o F' is s-finitary by [Lemma 3.105

~ ~ H ~
- Fokk is s-finitary by definition of kk” and since I preserves filtered colimits

-Fo kAkH is the left Kan extension of kk® o F
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- kk% o F is the left Kan extension of kk% o I/

- hence both are equivalence.

O

Proposition 3.107. Resé, Ind$, — Xpya G and — %, G are Ind-s-finitary and preserve

separable algebras.

Proof. preservation of separable algebras: clear (use that groups are second countable)
Resh: A’ C Res5(A) G-invariant and separable

- cofinality

- A” algebra generated by LA’

- is separable and L-invariant

- A’ C Res&(A")

Rest, - preserves inlcusions

- use [Lemma 3.704]

Ind%: preserves inclusions by same argument as [Lemma 3.95
cofinality:

B’ C Ind%(A) separable

- B' € Cy(supp(x)) ® A

- find separable A’ C A with B’ C Cy(supp(x)) ® A’

— use again that G is second countable

—|Lemma 3.104

Xmax G

- preserves filtered colimits
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- cofinality (exercise)

—|Lemma 3.104

X, G-
- preserves inclusions
- cofinality (exercise)
—[Lemma 3.104]
m
Corollary 3.108. We have descended colimit- and compact object preserving functors

1. For any homomorphism L — G

Resh : KK — KK .

2. For H C G closed:
Resk : KK — KK .

3. —x, G :KKY = KK for ? € {r,max} and — Xy : E¢ = E.

Corollary 3.109. For! in {se,ex}:

1. Green’s imprimitivity theorem: For H C G closed:

— %7 H = Ind%(—) x7 G : KK{! — KK{ .

2. For H C G open and closed: We have adjunction

Ind% : KK/ = KK : Res$ .

3. Green-Julg Theorem: If G is compact, then we have an adjunction

Resg : KK, S KK : — x G .

4. Dual Green-Julg: If G s discrete, then we have an adjunction

— Xmax G KKP 5 KK : Res© .
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Proposition 3.110. Resé has symmetric monoidal refinement.

Proof. have seen: Resé KKL is symmetric monoidal
) sep

- Ind : Cat® — Prk is symmetric monoidal functor

- preserves algebras and algebra morphisms

- interpret symmetric monoidal categories and symmetric monoidal functors as commutative
algebras an morphisms between them

4 Applications and calculations

4.1 K-homology
4.1.1 Basic Definitions

in general:

KKY(C, C) is commutative ring:

— since C is commutative algebra and coalgebra

— composition product is second structure, a priori only associative

— in this case the same

Definition 4.1. We define the equivariant K -theory spectrum KUC := KKG((C,(C) mn
CAlg(Mod(KU))

KK is enriched in KU

G - compact group
- all irreducible unitary representations finite dimensional

- every unitary representation completely reducible (orthogonal sum of irreducible ones)
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- G - set of equivalence classes of irreducible unitary rep’s of G
- L*(G) has G x G-action by left- and right translations
-1ed

— get homomorphism V* ® V, — L*(G)

—v@w > (v, 7(g)w)

— check equivariance: 7(h)v @ w(l)w + (v, m(h~gl)w)
Proposition 4.2 (Peter-Weyl Theorem).

PV ov. = LG
e

as representation of G x G.

Example 4.3. G - finite

- |G| =3 dim(r)?

- can use this to show that one has found a complete set of representatives

consider representation ringoid:
- isoclasses if finite-dimensional (unitary) representations
- operations @, ®

- form ring completion,

Definition 4.4. The representation ring R(G) is the ring completion of the ringoid of
finite-dimensional representations.

Lemma 4.5. We have an isomorphism of groups R(G) = Z[G].
Example 4.6. C,

-Gy ={1,0}

-o2=1

-R(Cy)=Z ok

- (n+om)(n'+om) = (nn/ +mm') + o(nm’ + mn’)

- R(Cy) = Z[(]
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Example 4.7. C,

- choose nth root of unity, e.g. ¢, := e

-C, = Z/n

- for [k] € Z/nZ get

=G

- R(Ch) = Z[G] O
Example 4.8. U(1)

-n= (u—u)

- R(U1)) = Z[Z] = Z]x, 2]

Example 4.9. G = SU(2)

- G has basis 7, := S"(C2)/in(|| — [|2S™+2(C?))

- dim(m,) =n+1

- My @ Ty = Tt + Tnam—2o + . .

- R(G) has basis (5, )nen Sn = S™(C?) - not irreducible
- Sy =Ty +Tp_2+ ...

- $pSm = Snim

_ R(SU(2)) = Z[z] = Z|N] O

Proposition 4.10. If G is a compact group, then KU§ = R(G) (as rings) and KUF = 0.

Proof. first calculate KUY as a group
- Green-Julg: KU = KK“(C,C) ~ KK(C,C*(G)) ~ K(C*(@))
- 0(G) = B End(V7)

- K(C*(Q)) ~ K(B,c¢End(V7)) P, . KU

TeG
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— use here: K(End(V;)) ~ K(Matgim(x)(C)) ~ KU

_KUGg @WEéZ * =0
* 0 *x=1

—get KUY = R(G) as Z-graded groups

(p,V,) - finite-dimensional representation
- is (C, C)-bimodule

- induces [p] € KK§(C,C)

— sum goes to sum
— tensor product goes to product
— get ring map R(G) — KK§(C,C)

must show that this is isomorphism
must show for 7 in G

- [7] goes to class of projection onto 1, € End(V,) C C*(G)

- under — x G see that V; goes to (C*(G), C*(G))-bimodule V; x G = L*(G) @ V,
— under this identification:

— left G-action on both, L*(G) and V;

— right G-action only on L?(G)

- to complete the Green-Julg iso consider restriction along C — C*(G)
— projection onto trivial subrepresentation

— insert Peter-Weyl for L*(G)

— get C,C*(G) -bimodule (@, Vi @ Vo @ V) 2V,

- this is bimodule which represenents C — 1,
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Corollary 4.11. If A is a G*-C*-algebra, then K.(A) is a module over R(G).

4.1.2 G-equivariant homology theories

we consider G'Top - topological spaces with G-action and equivariant continuous maps
- it is topologically enriched

- distinguish a subclass of objects: G-CW-complexes

Definition 4.12. An n-dimensional G-cell is a G-space of the form G/H x D" for H
closed in G.

define G-CW-complexes inductively:

- let A be a G-space

Definition 4.13. We consider A as —1-dimensional relative G-CW complex. An n-
dimensional G-CW-complex X relative to A is a space obtained as a push-out (by attaching
n-dimensional G-cells)

|l,c; G/H; x L Vg

|

I—liGI G/HZ X Sn—l — X

for some n — 1-dimensional G-CW-complex Y. A G-CW-complex is a G-space which is
has a filtration X_1 C Xg C X7 C ... by n-dimensional G-CW -complexes X,, such that
X1 is obtained from X,, by attaching n + 1-cells and X = colim,cn X,.

GCW - full subcategory of GTop of G-CW complexes

- W}, - homotopy equivalences (use topological enrichment)

Definition 4.14. We define the co-category of G-spaces GSpc := GCW[W, | as the
Dwyer-Kan localization of G-C'W-complexes at homotopy equivalences.

X in GTop
- H closed subgroup
- X" - H-fixed points in X

f: X — Y - amorphism in GTop
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Definition 4.15. f is a G-weak equivalence, if f7 : X" — YH js a weak equivalence in
Top.

We - weak equivalence in GTop

Theorem 4.16. The canonical map GCW[W, '] — GTop[W}] is an equivalence.

e

Corollary 4.17. GSpc ~ GTop[W,}].

consider GOrb - full subcategory of GTop on orbits of G
- is topologically enriched

- presents an oo-category (also denoted by GOrb)

X in GTop
- S € GOrb
- X(S) := (HomgTop (S, X) in Spc
- get functor
GTop — Fun(GOrb°® Spc) ~ PSh(GOrb) , X — X(—)

Theorem 4.18 (Elemendorf’s theorem). The functor GTop — PSh(GOrb) presents the
Dwyer-Kan localization of GTop at the weak equivalences.

Corollary 4.19. GSpc ~ PSh(GOrb)

Remark 4.20. BG ~ Autgorn(G)

GTop — PSh(GOrb) =% Fun(BG, Spc)

- this is a further localization

- inverts maps whose underlying map is a homotopy equivalence

- Fun(BG, Spc) is the home of Borel equivariant homotopy theory

]

Definition 4.21. An equivariant homology theory is a functor E : GOrb — M for a
stable cocomplete target M

84



get colimit preserving functor £ : PSh(GOrb) - M

- get functor F : GTop — M which preserves weak equivalences and whose factorization
over PSh(GOrb) preserves colimits

- will all be denoted by E

- for X in G'Top

Definition 4.22. An equivariant cohomology theory is a functor E : GOrb®® — M for a
stable complete target M.

get limit preserving functor £ : PSh(GOrb)® — M

- get functor E : GTop® — M which preserves weak equivalences and whose factorization
over PSh(GOrb)° preserves limits

- will all be denoted by E

- for X in G'Top

4.1.3 Equivariant K-theory for compact groups

G - a compact group

- have functor GOrb®®? — GC*Alg™: S +— Cy(S) (consider GOrb as discrete category)

- use here compactness of G in order to ensure that morphisms in GOrb are proper and
therefore preserve Cyp-functions

now GOrb and GC*Alg™ as enriched

- the functor is enriched
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- factorizes over GOrb” — GC*Alg,"

- apply kkj’
- get functor K¢ : GOrb®® — KK¢

- define K¢ := KK“(K% C) : GOrb — KK“

Definition 4.23. The functors K¢ and K¢ represent G-equivariant KK -valued K -theory
and K-homology.

B in KK¢

- can introduce coefficients in B:

-K§:=K°®B

- Kg.p = KKY(K% B)

—if B is a commutative algebra, then K§ takes values in commutative rings

—since Cy(S) is a commutative algebra in GC*Alg™

calculate values on orbits

- use: Co(G/H) ~ Ind%(C)

- Ind%(A) ® B = Ind% (A @ Res$(B))

~get - K§(G/H) ~ Co(G/H) ® B ~ Ind$(Res%(B))

- Kg.3(G/H) ~ Coind% (Res% (B))

consider GLCH,,, - locally compact G-spaces and proper maps
X — kkE(Cy(X))

- B in KK¢

Proposition 4.24. If X is homotopy equivalent to a retract of a finite G-CW complex,
then kk“(Co(X)) ® B ~ K§(X) and KK®(Co(X), B) ~ Kg p(X).
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Proof. the class of X for which this is an equivalence has the following closure properties:
- contains GOrb

- is invariant under homotopy equivalence

- is invariant under retracts

- is invariant under attaching G-cells

hence contains all locally compact spaces X which are homotopy equivalent to a retract of
a finite G-CW complex

use:

- GLCH™_ - homotopy retracts of finite G-CW complexes

prop

- GLCH™ = — PSh(GOrb) is localization at homotopy equivalence

prop

- Fun®*PSh(GOrb)*, M) ~ Fun(GOrb, M) for finitely cocomplete and idempotent
complete target

- F,F': GLCH3  — M

- both homotopy invariant and excisive for cofibrant closed decompositions

- an equivalence Figorb ~ F|’G0rb extends essentially uniquely to an equivalence

absolute K-homology (in analogy to the usage of the ”absolute” in arithmetic)
- Mod(KU®) - valued K-theory and K-homology
- set K§ := KKY(C, K§) : GOrb®® — Mod(KU®)

- Kg.p := KKY(C, K¢ ) : GOrb — Mod(KU®)
Corollary 4.25. If X is homotopy equivalent to a retract of a finite G-CW complez, then
K%(X)~ K(Co(X)® B) , Kgp(X)~KKYCo(X),B) .

- mKE(X) and 7Kg 5(X) are modules over R(G)

F - a set of subgroups of GG
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Definition 4.26. F is called a family of subgroups if it is tnvariant under conjugation
and forming subgroups.

Example 4.27. 1. Cyc
2. All
3. Comp - compact subgroups
4. Fin - finite subgroups
5. {e} - trivial subgroup
6. Prop - proper

7. VCyc - virtually cyclic

fix family F of subgroups

- define ideal I := [ r(ker(R(G) — R(H))

Example:

I := Iy - dimension ideal

assuem G finite

- 7y - conugacy class in G

- F(7) - family of all H C G with HN~ =1
- (7) € R(G) - ideal of p with trp(y) =0

- L(y) : Mod(KUY) > Mod(KU%),) : incl

— symmetric monoidal Bousfield localization at (KU% % KU%),c R(G)\~y

Lemma 4.28. K¢ p(—)(,) vanishes on F().

Proof. H in F(7)
- can find 7 in R(G) with

~nu =0
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~Tr(n)(g) # 0 for all g in v

— hence n & (7)

- n acts on Kg g(G/H)(y) by ng =0
- 1 acts invertibly on K¢ p )(G/H)

—hence K¢ p(G/H) ) =0

X - G space
- X7 - fixed points

- inclusion X7 — X

Theorem 4.29 (Segal localization). If X7 admits an invariant open neighbourhood such

hat X7 — N, then
Ke,5(X7) ) = Ka,s(X))

s an equivalence

Proof. X C N - open invariant neighbourhood

- have push-out

X7
l
N\ X"——N
L]
X\ XT—X
- have push-out square
Ke.p(X7))
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left vertical arrow is 0 — 0

- right vertical arrow is equivalence

consider equivariant K-cohomology
- K§ .(X) is R(G)-module

- F - a family of subgroups of G

Proposition 4.30. If X is an n-dimensional G-CW complex with stabilizers in F, then

Itm KG(X) 220

Proof. preparation:
assume: H € F

claim: Irm.K%(G/H) =0
-xin Ir

- 2 ® kk%(Cy(G/H)) ~ Ind% (Res%(z)) = 0

argue by induction by n

X,, - n-skeleton

long exact sequence

T KE(X,, X, 1) = mKE(X,) - mKG(X,_1) = m 1 KE(X,,, X, 1)
outer terms are annihilated by [r

- . K%(X,_1) annihilated by I+

- z a class in m.KE(X,,)

~din I

- iz comes from T, K%(X,,, X, 1)
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- one more application of element of I annihilates class

an R(G)-module M is Ir-complete if
M — lim, M/I"M = M,

is an isomorphism

Corollary 4.31. If X is a G-CW complex with stabilizers in F and 1lim' m K% (X,,) =0,
then moK%(X) is Ir-complete

Proof. always have Milnor sequence

1
0 — limm,_ K§(X,) = mK%(X) = 1im7,K$(X,) — 0

- by assumption moK%(X) = 1immoK%(X,,)

- 1lim,, WOKE(X)/]}” = lim,,, ﬂng(Xn)/I}%rng(Xn) =~ 1lim, 1K§(X,) ~ mK§(X)

[
always have map R(G) — mK%(X) ,i— x-1
- induced from X — *
- get map R(G);, — moKG(X)
Theorem 4.32 (Atiyah-Segal completion). R(G)}{E} — m.KG(BG) as isomorphism.
Proof. later O]

better approach:

- completeness as a property of M in Mod(KU®)

xr € R(G)

M5 M= Mz
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- define completion at = by M, := 1im, M /2"

I C R(G) - an ideal

- need I to be finitely generated
I = (xq,...,2p)

- define I-completion

M= (LT

- is independent of choice of generators

want M +— M, as left-adjoint of Bousfield localization

- M in Mod(KU®) is I-torsion if M is in Mod(KU%)P* and every element in 7,M is
annihilated by I™ for some n

- Ain Mod(KUY) is I-acyclic if A ®gye M ~ 0 for all I-torsion modules

- it is enough to check (... (KU%/x1)/xs)...)/x, for the generators x; of I

—ie Al 2~ 0

- f: N = N"in Mod(KUY) is called a I-local equivalence if its cofibre is I-acyclic
- M is I-complete if map(f, M) is an equivalence for all I-local equivalences

- have Bousfield localization L; : Mod(KU%) — LyMod(KU®)

- Li(M) ~ M,

for Bousfield localization Mod(KU®) — L;Mod(KU%) of Mod(KU®%) at (K(x) —
KUG)mER(G)\I

- I-adic completion

IGM97,, Sec. 4]

Theorem 4.33. If X is a CW-complex with stabilizers in F, then KG(X) is I-complete.

Proof. LiMod(KU®) is closed under limits
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- K§(X) is a limit over K§ on finite subcomplexes

- if Y is finite G-CW complex with stabilizers in F then K§(Y) is I-complete O

4.1.4 Locally finite K-homology

G locally compact group

- GLCH,,,p - category of locally compact Hausdorft spaces with G-action and proper
maps

- have functor Cy(—) : GLCH® ~— GC*Alg™

prop

- B in KK¢

- can consider KGp : kk(Co(—)) ® B : GLCH®, — KK

prop

Definition 4.34. The functor KfB : GLCH®® = — KK is called the compactly supported

prop
equivariant K-theory with coefficients in B

Definition 4.35. The functor KZC];B = KKY(Cy(—), B) : GLCHop — KK is called the
locally finite equivariant K-homology with coefficients in B

Proposition 4.36. KSB and Kng are homotopy invariant and excisive for G-invariant
cofibrant decompositions into closed subspaces.

Remark 4.37. absolute versions

Klg;B(—) = KK%(Cy(—), B) : GLCH,0p — Mod(KU)

K&;(—) :== KK°(C,Cy(—) ® B) : GLCH®, , — Mod(KU)

prop

assume: B is separable
- KEB(—) sends countable disjoint unions of second countable spaces into coproducts

- Kg 5(—) sends countable disjoint unions of second countable spaces into products provided
B is in KK,

— values: for G discrete (or more generally H clopen):
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- use (Ind%, Res%)-adjunction

KY. 5(G/H) ~ KK®(Co(G/H), B) ~ KK"(C,Res} (B))

—if H is in addition compact

K? 5(G/H) ~ KK"(C,Res§(B)) ~ K (Resf (B) x H)

these are not equivariant homology or cohomology theories
- "wedge axiom” not satisfied
- can force an equivariant homology theory

GLCHYE _ gpaces which are homotopy equivalent to finite G-CW complexes

prop

Definition 4.38. We define the representable K K% -theory as the left Kan extension

KK (Co(—)®A4,B) Gfin
GLCHYf® T Mod(KU)
\ /RK{G(—,A,B)

GTop

special case: RKg p(—) := RKKY(—,C, B)
Proposition 4.39. RKK®(—, A, B) is an equivariant homology theory

values on orbits:

| K(Res§;(B)x H) H € Comp
e p(G/H) = { KK”(C,Res%(B)) H ¢ Comp

Remark 4.40. warning this is not Kasparov’s definition of RKK%(X, A, B)
- the latter uses Cp(X)-equivariant K K%-theory of A ® Cy(X) and B ® Cy(X)
- our definition is made to be a homology theory

— this is not clear (probably not true) for Kasparov’s theory
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4.2 Assembly maps

4.2.1 The Kasparov assembly map

G - locally compact group
Problem 4.41. Does — x, G : KKY — KK has a left adjoint?

Example 4.42. G compact:

- Green-Julg:
Resq : KK S KK : — %, G

- left adjoint in this case is Resg

- — X, G preserves all limits ]

in general:

Remark 4.43.
C,D - left exact oo-categories
- R :C — D - finite limit preserving functor

- apply Pro : Cat'™ — Prf (actually an equivalence)
R

C D
lyc ly’D

Pro(C) —2- Pro(D)

|

“R preserves all limits
- R has left-adjoint L

Mapy,(D, R(C)) = Mapp,(p) (D, yp(B(C))) = Mapp,qp) (D, R(ye(C))) = Mappyy(c)(L(D), 9 (C)) =
colimMap.(L(D),C)

- here in last term interpret L(D) is a pro-system (C});es in C

- Map.(L(D), C) is an inductive system (Map,(C;, C'))ics in Spe
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- colimit is over [

— X, G : KKY - KK preserves finite limits
- admits pro-left adjoint: Resg : Pro(KK) & Pro(KK%) : %, G

- colimKK%(Resg(A), B) ~ KK(A, B x, G)

Baum-Connes conjecture predicts candidate for Resq:

Definition 4.44. A classifying space ExG for a family of subgroups F is a G-CW complex
with
x HeF

ErG(G/H) :{ ) Har

in this definition: ErG is a topological space
- use the notation also for homotopical object in GTop[W '], GSpc or PSh(GOrb)

Lemma 4.45. A classifying space ExG (as CW -complex) exists.

Proof. use Elmendorf:
-1:Gx0Orb — GOrb
- E]:G ~ i;*]:

— xx - final in PSh(G#Orb)

GCW[W, '] ~ GSpc ~ PSh(GOrb)

there exists G-CW-complex representing this homotopy type ;% x O

Lemma 4.46. If X is a G-CW complex with stabilizers in F, then Homgmop (X, ExG) is
contractible.

Proof. assumption on X:

- X(—) ~4i*X(—) for i : GFOrb — GOrb
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- 4 is fully faithful

- "1y = 1dpsh(GrOrb)

use again GCW[W, '] ~ GSpc ~ PSh(GOrb)

(Homgrop (X, ExG) =~ Mappgpcor) (X (—), ExG)
Mappgncor) (111" X (=), ErG)
MaPpgh(crorb) (i X (=), i ErG)
MapPpgh(G rorb) (0 X (=), *7)

~

12

12

12

Corollary 4.47. The classifying space ExG is unique up to contractible choice.
choose G-CW complex ExG

Definition 4.48. Let £ExG denote the inductive system of G-finite subcomplexes of ExG
and inclusions.

ErG is filtered

define

Resg(A) =~ (kk“(Cy(X)) ® ResgA) xeee,n
colim KK%(Resg(A), B) ~ colimyes, ¢ KK (Co(X)®Resg A, B) ~ RKKY(EgompG, Resg A, B)

in order to identify Resg(—) as pro-adjoint must construct natural transformation

RKK(EeompG, ResgA, B) — KK(A, B %, G)

- natural in B

assume now: X in GLCH,,,, with proper G-action such that X/G is compact
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will construct Kasparov’s projection p: C — Cp(X) x G

Lemma 4.49. There exists function x in Co(X) with [, x*(g " x)u(g) =1 for all x.

Proof.
for any [z] in X/G choose preimage x in X and positive function y, in C.(X)

- by compactness of X/G: can choose finite family x1, . .., z,, such that image of | J;__, supp(xz)
in X/G is all of X/G

- set X = Z?:l Xz

-set p(z) == [, x* (g~ ) u(g)

- this function is positive and G-invariant

- = i
set x : N
- x has the required properties O

from now on G unimodular (for simplicity):
- g (z— x(2)x(g7 1)) is element in C.(G,Cy(X))
- by properness of action

- consider as element p,, of Co(X) %, G

pi(hz) = [ x(a X9~ e)x (g h g™ ) ()

)x(g~ ') x(h™ x)u(g)

Q\Q\

= x(x)x(h'x)
= py(z,h)

check also: pi = py: py(97 2,971 = x(97'2)x (997 @) = py(g, 7)
Definition 4.50. p, is called the Kasparov projection

element of KKy(C, Cy(X) %, G)
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Lemma 4.51. The space R(X) of x in Ce(X) with [, x(g7'x)u(g) =1 is contractible.

Proof. Exercise
- see later
- will show: singR(X) is trivial Kan complex O

Corollary 4.52. The class p, is independent of the choice of x.

notation px

Definition 4.53. The composition

piesr KK (Co(X)®Resg A, B) =% KK((Co(X)®ResgA) %, G, Bx,G) 224 KK(A, Bx,G)

is called the Kasparov assembly map for X with coefficients on B.

want a map of pro systems (natural in B)
(KK (Co(X) ® ResgA, B))xeee,m,c — KK(A, B %, G)

- must refine ug‘ff’ 5 this to natural transformation in X and B

f X — Y proper G-equivariant
-f* R(Y) = R(X)
- X € R(Y)

the following commutes

x, QA) X
A—BEONE Xy @ A) x, G
| o
A DEVRE oy @ A) %, G

KK (Co(X) @ ResgA, B)ﬂ)KK((CO( X) ® ResgA) %, G, B X, G)pf & KK A, B %, G)

: ; |
Px®A

KK%(Cy(Y) ® ResgA, B) =S KK((Co(Y) @ ResgA) %, G, B x, G) ZE5KK(A, B %, G)
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must improve this idea

- must get rid of choice of x

superscript pc inducates proper cocompact G-action

Proposition 4.54. We have a natural transformation of functors from GLCHLL,, X
KK%P x KK — Mod(KU)

KK%(Cy(-) ® A, B) — constik(4,Bx,G) -

Proof. R : (GLCHL, )P — Set

- X = R(X)

- have natural transformation of functors (GLCHY[ )°P — Set

p: R — HOmC*AIgnu(C, 00(—) X G)

- X = (x—py)

- naturality expresses: f*p, = Dgey

compose with Q*KK, interpret R(—) with values in Spc
- get natural transformation of functors (GLCHE; )°P — Spc

prop

—p: R— QKK(C, Cy(—) x G)

apply (X3, Q>)-adjunction
- get natural transformation of functors (GLCHPS, )°P — Sp

prop

—p: TR = KK(C,Cy(—) x G)

consider functors p, q : GLCHEEOP X A — GLCHgfop

-q: (X, [n]) —» X x A"

-p: (X [n]) = X
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— A" — % induces natural transformation ¢ — p

E: (GLCHES, )P — Sp any functor
- define H(F) := q¢*E (homotopification)

- H(E)(X) ~ colimpor E(X @ A™)

- qp*E(X) ~ colimper F(X) ~ E(X)

- have natural transformation p*F — ¢*F

- get qp*E — qq*E

- hence £ — H(FE)

- call E homotopy invariant if pr¥ : E(X) — F(X x A') is an equivalence

Proposition 4.55. E is homotopy invariant if and only of E — H(E) is an equivalence.

Proof. Exercise! m

Lemma 4.56. R — * induces an equivalence H(X R) — constg

Proof. must show:
- colimper XPR(X @ A") ~ S

- colimper R(X ® A™) ~ * (in Spc, since X preserves colimits)

- R(X ® A7) is simplicial space
- is levelwise discrete since R takes values in sets
- hence R(X ® A7) is simplicial set

- colimpor R(X ® A™) ~ |R(X ® A7)]| - realization

suffices to show
- R(X ® A7) — x is trivial Kan fibration

-any x € R(X ® 0A™) extends to x € R(X ® A™)
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- set e.g. X(ot) = /ox2(z,t) + (1 — o)x2(x, to)
—t€0A
- ot in A" - barizentric coordinates

— tg - zeroth vertex of A"

use that KK(C, Cy(—) x G) is homotopy invariant

- constg ~ H(EPR) — H(KK(C,Ch(—) x G)) < KK(C,Co(—) x G)

constg — KK(C, Cy(—) %, G) — map(KK((Co(—) ® A) x G, B),KK(A, B x, G))
- second map is composition

- this yields desired natural transformation

KK((Co(—) ® A) X G, B) — constki(a,px,¢) : GLCHY ~ — Mod(KU)

prop

restrict RKK%(—, ResgA, B) to GTOP/ECOW,G

- the objects in GLCHY™ in this slice are in GLCHP®

prop prop
- get natural transformation
/Li‘};p : RKKG(—, ResgA, B) — constiki(a,Bx,q)
Conjecture 4.57 (A generalized version of the Baum-Connes Conjecture).
pe? o ap: BKKY(Ecomy@, ResgA, B) = KK(A, B %, G)

18 an equivalence.

it presents Resg(A) ~ (kk%(Cy(X)) @ ResgA) X€EeompG @S Pro-left adjoint of — x, G
Conjecture 4.58 (Baum-Connes conjecture for G and B). The assembly map
e e BKKS (EeompG, ReseC, B) = KK(C, B %, G)

s an equivalence.
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it is known to be false in general
- but still no counter example for B = C
- if G is compact, then can take constant function

- in this case the Baum Connes conjecture is true: This is the Green-Julg theorem

4.2.2 The Meyer-Nest approach

in this section: G is discrete
- there is a version for locally compact groups
- it depends on generalization of the (Ind, Res)-adjunction

— this has not been discussed in the course

Definition 4.59. Define CC as the full subcategory of A in KK with Res$(A) ~ 0 for
all H in Comp

- the objects of CC are called weakly acyclic objects

- a morphism in KK¢ is called a weak equivalence if its fibre is weakly acyclic

Lemma 4.60. CC is a thick localizing tensor ideal

Proof. Resg is symmetric monoidal and preserves colimits O]

Definition 4.61. Define CZ as the localizing subcategory generated by Ind% (A) for all H
in Comp and A in KK |
Lemma 4.62. CZ is a tensor ideal.

Proof. Ind%(A) ® B ~ Ind% (A ® Res%(B)) O

- the objects of CZ are called compactly induced objects

103



Example 4.63. kk(Cy(G/H)) in CT

X - a finite G-CW-complex with compact stabilizers

- then Cy(X) € CZ

Lemma 4.64. The category CC is the right complement of CZ, in particular

mapy ke (CZ,CC) ~ 0 .
Proof. (Ind,Res) - adjunction
- it is at this point where we use discreteness of G

Lemma 4.65. We have a smashing right Bousfield localization

incl: CZ S KKY: P .

Proof. CZ is localizing
- shows existence of adjunction

— is Dwyer-Kan equivalence at the weak equivalences

must show: smashing

— P(A) — A - counit

~ N(A) - P(A) — A cofibre sequence
- N(A)eccC

—since KK%(Q, P(A) — A) is equivalence for all Q in CZ

-P(A)~P1)® A
— P(1) ® A € CT (since CZ is tensor ideal)

- P(1) ® A — A is weak equivalence (since CC is a tensor ideal)
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Definition 4.66. The morphism « : P(1) — 1 is called the Dirac morphism.
Definition 4.67. The map

tigh g KK(A, P(B) 1, G) = KK(A, B %, G)
15 called the Meyer-Nest assembly map.

Proposition 4.68. The Mayer-Nest and the Kasparov assembly maps are equivalent.

Proof.
RKKC (EeompG, A, P(B)) —— RKK®(E¢ompG, A, B)
Kasp Kasp
Nlp’G,A,P(B) J(#G,A,B
MN

KK(A, P(B) % G) —=2%  KK(A, B % G)

upper horizontal equivalence:

- RKKY(E¢ompG, A, N(B)) ~ 0

~ RKK® (EcompG, A, N(B)) is colimit of KK (Co(X)®A, N(B)) for X finite G-CW complex

with compact stabilizers

- kkY(Co(X)® A) € CT

right vertical equivalence: Oyono-Oyono (for discrete GG), Chabert-Echterhoff for general

G
- sketch:

- suffices to show equivalence for Ind%(C) in place of B

KK (C(X) ® Resg(A), Ind%(C)) ~ KK”(C(Res$ (X)) ® Resy(A), C)

- colimit over X C &¢yp,pG calculates homology of Egom,H >~ *
- KK#(Resy(A),C) ~ KK(A, B x H) ~ KK(A, Ind%(C) %, G)

— Green imprimitivity

dual Dirac

G - a discrete group
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Lemma 4.69. The following assertions are equivalent:
1. There exists 5 : 1 — P(1) such that f o a ~ id.
2. KKY(C,CT) ~ 0

3. KKY ~CZI x CC
Definition 4.70. A morphism 3 :1 — P(1) as in is called a dual Dirac

morphism and the composition v := ao [ :1 — 1 is called the vy-element.
one says that G' admits a ~y-element

Proof. ~ is idempotent
-vCC =0
—use CZ®CC ~0

- (A= PA) - A)®@CC~0

-(I=9)jez =0
—use: P(A) — A is equivalence for A € CT
— then A — P(A) is also equivalence

*’}/A: idgy

1=2:

AecCC
-A=74A+(1-7)A
-yA=0

- KK%((1 —9)A,CT) = KKE(A, (1 —9)CT) =0

2=3

- clear since also KK“(CZ,CC) ~ 0
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3=1
1 decomposes P(1) @ 1¢c
- take §:1 — P(1) the projection

]

Corollary 4.71. If v =1, then the Baum-Connes conjecture with coefficients for G holds.

Proof. KK ~CT

- P(A) — A is identity

O
Corollary 4.72. If G admits a y-element, then
pe et + RKKY(EomyG, A, B) = RKKY(EgomyG, A, B)
18 split injective.
Proof. pll) 5 admits a left inverse
O

injectivity is relevant: implies e.g. Novikov conjecture

Remark 4.73. existence of v-element is usually shown by providing explicit candidate

for

Theorem 4.74 ([KS03)). If G is discrete, acts isometrically and properly on a weakly
bolic, weakly geodesic metric space of bounded coarse geometry, then G admits a ~y-element.

- a simply-connected complete non-positvely curved Riemannian manifold of bounded
sectional curvature is an example of such a space

- Euclidean buildings with uniformly bounded ramification
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4.2.3 The Dauvis Luck functor

consider

GompyOrb — Mod(KU)

- S+ KK%(Cy(S), B)

— value is defined on all of GOrb

— but not functorial for non-proper maps G/H — G/L, i.e. if L/H is not compact

— value for compact H:

KKY(Cy(G/H), B) ~ KK¥(C,Res$(B)) ~ K(B %, H)
Problem 4.75. Extend this to a functor GOrb — Mod(KU).

- value at * is K(B x, G)

- defines equivariant homology theory

in the following describe solution if G is discrete

- first construction due to Davis-Liick [DL9g| (with corrections by M. Joachim [Joa03])

GC*Cat™ - category of C*-categories with G-action
- construct V : Set — C*Cat™:

- describe C*-category CIS]:

— objects: elements of s

. C 5= S/
— morphisms: Homg(g(s, s") = { 0 else

-f:8=9

— induces obvious functor s — f(s)
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go from C*-categories to algebras

have adjunction
Al C*Cat™ = C*Alg™ : incl
- or with G-action
Al GO*Cat™ = GC*Alg™ : incl

- C[-]: GSet Y5 GorCat™ A ot Alg™ 2 KKE
Proposition 4.76. kk“(C[S]) ~ kk®(Cy(9))

Proof. uses another functor

Re : surveyA : C*Caty; — C*Alg™

- subscript means: functors must be injective on objects

- A%C) == B¢ crec Home (C, )

— matrix multiplication

— is a pre-C*-algebra

— A(C) - closure of A°(C)

- AY — A - natural transformation (by universal property of A7)

Proposition 4.77 (M. Joachim [Joa03]). kk“(A/(C)) — kk“(A(C)) is an equivalence.

A(CIS]) = Go(5)

- not natural in S
- left-hand side is covariant

- right hand side is contravariant
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Definition 4.78. We define the Davis-Liick functor

K% : GOrb — KK

by
KB% - Gorb S5 gorcat™ 2 kKO =28, KKG 2% KK
K& = KK(—, Kg'5)
absolute version
Theorem 4.79. There s an equivalence
(K&5) Grimorb = KK(Co(=), B) Gy 0nb
Proof. this is a version of Paschke duality [BELa]
assume: H compact, discrete
Ka'5(G/H) ~ KK(C, (C[G/H] ® B) %, G) ~ KK(C, (Ind§;(C) ® B) %, G)

~ KK(C, (Ind$ (Res% (B)) x, G) ~ KK(C,Res§; B x H)

~ KK (ResyC, Res& B) ~ KKY(Co(G/H),
- suffices to construct this equivalence natural in G/H
- is not easy

Corollary 4.80. KG 5 ~ RKg g on G-CW-complexes with compact stabilizers

Kgfjg represents an equivariant homology theory

- K@'5 ~ RK¢ p on G-CW-complexes with compact stabilizers

discuss now Davis-Liick assembly map
- F: GOrb — M any functor

- M cocomplete
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- F - any family of subgroups
-i: GrOrb — GOrb - inclusion
— have adjunction ¢, : Fun(GxOrb, M) = Fun(GOrb, M) : *

— have counit *E — E

Definition 4.81. The map Asmbr g : 41 E(x) — E(x) is called the Davis-Liick assembly
map associated to £ and F

Asmbr g : colimgegrorn E(S) — E(*)

- in terms of homology theory

E(ErG) — E(*) induced by ExG — x

Theorem 4.82 ( [Kra20|, [BELa] ). The Kasparov and Davis-Liick assembly maps are

equivalent.
Kasp

P EgompG.C.B
RK.5(EcompGS ™= RK ¢, p(*)

l AsmbComp,KDL l

K& (EcomyG) —— Kl ()

study dependence on B

- Kg : KK¢ — Fun(GOrb, KK)

- B— KB

i% : HOrb — GOrb - induction functor

—Zg(S) Z:GNHS

Theorem 4.83 ([Kra20], [BELa)). For any subgroup H of G we have a commutative
square

m Ki"
KK" —— Fun(HOrb, KK)

J{Indg lig,g

KKE 26"
—— Fun(GOrb, KK)
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Corollary 4.84.

Asmein,KDL

KhL (BpinH) ne K(B x, H)

J/_ Asmbp. DL J(_

G,1d% (B)
Kg,lfndg(B) (EFmG> " K(Indg(B) Ay G)

Corollary 4.85. _TfAsrrlb]_;ianzé ,, s an equivalence for all B in KK, then ASIHbFin’KZ%C B

is an equivalence for all A in KK,

The Baum-Connes conjecture with coefficients is inherited by subgroups.

4.3 The index class
4.3.1 K K-theory for graded algebras

in order construct index classes of Dirac operators naturally need graded C*-algebras and
corresponding K K-theory

we first introduce the corresponding structures

- we consider complex G-C*-algebras
- we will interpret Cs-graded G-C*-algebras as G5 := G x Cs-equivariant C*-algebras
- the tensor product is modified to ®

- Koszul sign rules

consider GC*Alg™

- A e G,C*Alg™

- have the following structure

— o € (3 - non-trivial element

- A= Ay @ A, as C-vector space, eigenspace decomposition for o

— Ay - eigenvalue 1
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— A; - eigenvalue —1

— write elements as ag + a1
— Ay is subalgebra

— A1Ag C Ay, AgA C A

— A1A; C A

graded tensor product on GoC*Alg™:
change symmetry: &
M GoCr Alg™ — Go* Alg™

- underlying bifunctor on ®

- symmetry: s4 p : A&™ B — B&™A:

SA7B((CZ() + al) X bo + b1>) = (bo X ag — bl X CL1) + (bl X Qo + bo X al)

- this is the tensor product imported from Cs-graded vector spaces

— unit, associator and relations imported, so do not have to check

now check: A& B is Go-pre C*-algebra
- form minimal or maximal completion

— ylelds ®min and ®max

Lemma 4.86. The functor kk%? : G,C*Alg™ — KK has a symmetric monoidal
refinement for &.

Proof. need first to descend ® to KKSGG%

- then extend to KK&?

- consider to version: minimal and maximal
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- it is bicontinuous
— hence descends to homotopy localization
- it is associative

— hence descends to K¢,-stabilization

Lemma 4.87.

1. ®, is semi-ezact for semiexact sequences of graded algebras for ? € {min, max}.

2. Omax 1S exact.
Proof. exercise

- ® descends to semiexact localization

® preserves group objects
- by associativity

- & descends to KK?

sep

tensor unit of ® is C
- trivially graded
now extend along Ind-completion

- arguments as in the ungraded case

have functor
ResZ, : KKY — KK

- is symmetric monoidal

Example 4.88 (Examples of graded C*-algebras).

C with the trivial grading
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- is the tensor unit of ®

Mat,(C)
- 2x2-matrices with even odd grading

- is End(C & C°P)

Clifford algebra

-Cl' 2 Clo]/(e? =1)
- deg(o) =1

-o'=o0

- is isomorphic to C*(ég) as Cs-algebra

Lemma 4.89. We have an isomorphism C1'&C1! 2 Maty(C) in GoC*Alg™.

Proof. - generators are 7 and o

—let o act on C1' by left multiplication
—let 7 act by izo (z the grading operator)
— 120" = —102 = 120

~T0+ 0T =1200 + 0120 = iz — 12 = ()

—TO = 1200 = 12
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N

S

- (5 acts on R by multiplication by —1

0

:= Cp(R) with induced action in Cy,C*Alg™

- have semisplit exact sequence

0— Co((0,00)) ®C1' - 5 S5 C—0

~e:S—=Cis f— f(0)

- Cp(0,00) ® C1' — S sends fo + of1 to t — fo(|t]) + sign(t)fi(|t]) S is represented on
L*(R)

- as multiplication operator

- Hilbert space again with flip action O

S is a coalgebra
counit:

¢:S — C - evaluation at 0

S®S acts on L2(R)QL2(R)

- this is L*(R)®L*(R) = L?*(R?) with the grading given by the flip action again
- define A : § — S&S

- formally f(z) — f(z®1 + 1®z)

R? has coordinates zg, z1

- on L*(R?) have operators

- xg, x1 - multiplication by coordinates

- have operators zy, 21 - grading operators
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- z;¢ = ¢ depending on whether ¢ is even or odd in x;
- 200(w0, 21) = 5(((x0, 1) + G(—w0,21)) — (¢(w0, 21) — S(—w0, 21))
- 21 analogous

- define zy := xg

- 1= Zoxy

- then

- ToT1 + 129 =0

- consider unbounded odd operator o + #; on L*(R?)

- is selfadjoint

- define S — B(L*(R?))

- f = f(Zo + Z1) by functional calculus

- this takes values in S&S

A: S — 8&8 is coproduct

obvious: e®id: S — S®S — S is identity

ST T+ T~

Lemma 4.90. (S, €, A) is a commutative coalgebra in CoC* Alg™.

Definition 4.91. We define KK* := Comody e (kk€(3))

have functor

KK — KAKG, A SQA - free comodule

define kAkG : G C*Alg™ — KK as composition

Kk s G0 Alg™ B2 kG S0, KK

Corollary 4.92. KK (A, B) ~ KK®(S ® A, B).
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this is here consequence of definition

e
- in the classical literature KK, (A, B) was define by Kasparov in terms of cycles and
relations

- this formula is then a theorem by U. Haag [Haa99, Thm. 3.8]

e
kk is symmetric monoidal functor

- comparison with ungraded case

Res&
GC*Alg™ —3 GoC* Alg™

i from universal property of kk“

- is symmetric monoidal

Proposition 4.93. i is fully faithful.

Proof.

KK (i(A),i(B)) ~ mapgyeqs (S®A, S®B)
~ KKG2(§®A,Resg2B)
~ KKY((S % Cy) ® A, B)
KKY(A, B)

12

to this end show that S x Cy ~ 1

- use exact sequence in CoC*Alg™

0 — Co((0,00))&C1' = & — C — 0

- induces exact sequence in C*Alg™

0 — (Co((0,00))RCLY) X Cy = S 3 Cy — CxCy— 0
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- all algebras in bootstrap class
- apply K-theory
- discuss long exact sequence and show that

K. (S % Cy) = {

- conclude kk(S x Cy) ~ 1

Lemma 4.94. In KK we have equivalence S(C) ~ C1'.

4.3.2 The index class

locally finite K-homology captures index classes
X - metric space with G-action by isometries
- H separable Hilbert space with unitary G-action

- ¢ Cy(X) — B(H) equivariant homomorphism
Definition 4.95. The pair (H, @) is called an equivariant X -controlled Hilbert space.
Example 4.96.

choose G-invariant measure p on X
- H = L2(X7 /L)
- G-action by translations

— is isometric since p is invariant

- ¢ : Co(X) — B(H) - action by multiplication operators

(H, ¢) is equivariant X-controlled Hilbert space

fix (H, ¢) - equivariant X-controlled Hilbert space

- consider A in B(H)Y - G-invariant operator
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Definition 4.97. The operator A is called controlled if there exists R > 0 such that if for
all f, " in Co(X) with d(supp(f), supp(f’)) > R, we have ¢(f)Ad(f") = 0. The infimum
of these R is called the propagation of A.

Definition 4.98. A is locally compact if ¢(f)A, Ap(f) € K(H) for all f in Cy(X).

Example 4.99 (integral operators).

consider continuous function k: X x X — C

- G-invariant: k(gz,gy) = k(z,y) for all z,y in X and ¢g in G
- assume k defines bounded integral operator on L*( X, u1):

— (A) (@) = [ bz, )y (y)uly)

~ Ae B(H)“

- the boundedness condition is complicated in general

— but here is a simple case: if X/G is compact, then A is defined

- A is locally compact

—e.g.: ¢(f)A factorizes as L*(X, 1) = Coupp(r)(U) = L*(X, p)

— second map is compact

— first map is bounded (uses continuity of of £ and finite propagation)

— hence A is locally compact

- assume: k(x,y) =0 for d(x,y) > R

— then A is controlled with propagation R

Definition 4.100. We define the Roe algebra C*(X, H, ¢)% to be the C*-algebra generated
by the controlled and locally compact operators on H.

Remark 4.101. in our example: the Roe algebra is generated by integral operators as
above O

Definition 4.102. The equivariant X -controlled Hilbert space (H, ®) is called ample if it
absorbs any other X -controlled Hilbert space by a controlled equivariant unitary inclusion.
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this means:

-if (H',¢') is any X-controlled Hilbert space, then there exists isometry U : H — H such
that U is controlled

Remark 4.103 (existence of ample X-controlled Hilbert spaces).

G trivial

- assume: X = supp(p)

- then (L*(X, p) ® (?, ¢ ® idy2) is ample

- if there exists R > 0 such that dim(L?(B(R, z), 1)) = oo for all z in X, then (L*(X, u), ¢)
itself is ample

- for non-trivial G:

— it is more complicated [BE17, Prop. 4.2]

— requires assumptions on X

Proposition 4.104 ([BE17, Prop. 8.1 + 4.2]). If X is the underlying metric space of a
complete Riemannian G-manifold with a proper G-action, then X admits an equivariant
ample X -controlled Hilbert space.

assume: (H, ) is ample
C*(X, H, $)“ contains any other C*(X, H', ¢')¢ as corner
- full corner if (H', ¢) is also ample

~ K(C*(X, H,$)) is then independent of (H, ¢)
Definition 4.105. KX(X) := K(C*(X, H, ¢)¢ is called the coarse K-homology of X.

Remark 4.106 (relation with equivariant coarse K-homology).
for details: [BELT, Sec. 5], [BE23]

- there exists an equivariant coarse homology theory

KX%:GBC — Mod(KU)
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- GBC - category of GG-bornological coarse spaces

— a metric space X with isometric G-acation represents an object of GBC

assume X is very proper (e.g. underlying metric space of a complete Riemannian G-
manifold with a proper G-action)

- then X admits an ample equivariant X-controlled Hilbert space (H, ¢)

- K(C*(X,H,¢)) ~ KX%(X)

- f: X — X’ a proper controlled map

— controlled means: for all § > 0 exists R > 0 such that d(z,y) < S implies d'(f(z), f(y)) <
R.

— induces morphism in GBC
— by functoriality get

— [ KX(X) = KX(X')

functoriality cam be described in terms Roe algebras

- (H, ¢) is X-controlled

- fo(H,¢) ;== (H,po f*) is X' -controlled

- f, induced by C*(X, H,$)¢ — C*(X',H,do f.) L C*(X', H', &)
— for choice of ample (H', ¢')

—for U: (H,¢o f*) — (H',¢') controlled O

Example 4.107 (Clifford algebras).
V' - an Euclidean vector space
- C1(V) - C*-algebra generated by V under vw + wv = —2(v, w) and v* = —v

- is Cy-graded such that v in V' is odd
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- C1" := CL(R™)

G - compact Lie group
- V - finite-dimensional unitary G-representation

Proposition 4.108 (Kasparov). In KK we have kAkG(C'O(V)) ~ kAkG(Cl(V))
KKy (A® C1", B) ~ KK (A ® Co(R"), B) ~ KK, (A, B) O

M complete Riemannian manifold with isometric G-action

Definition 4.109. An equivariant degree n Dirac bundle on M is a Cy-graded bundle
of C1™-right modules E — M with a metric and a connection V¥ and a bilinear map
c:T*M ® E — E (the Clifford multiplication) such that

1. ForY in T} M the map c¢(Y) : E,, = E,, is odd and C1™-linear.

2. (V) = —c(Y) and c(Y)? = —||Y||

3. VT is hermitean, grading-preserving, and [V%,c(Y)] = (VXY (compatibility with
Lewi-Civita connection)

4. Forwv in R™ the right-multiplication -v is odd, parallel, and satisfies v* = —v.

5. All structures a G-invariant

Example 4.110 (Spin® Dirac operator).
define Lie group Spin®(n)

- C1" = C1(R™)

- SO(n) acts on R"

- Spin® C C1™*

- subgroup of unitaries generated by U(1)1lc¢» and zy for unit vectors z,y in R”

construct Spin® — SO(n)

-u—=u—u*
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- preserves subspace R™ C C1"

- have exact sequence

0—U(1) = Spin°(n) — SO(n) - 0

M - oriented manifold

- P — M - SO(n)-principal bundle of oriented frames

Definition 4.111. A Spin©-structure is a reduction of structure groups of P to Spin(n)

in detail: it is given by:
- Q° — M - a Spin®-principal bundle

- an isomorphism Q° X gpine(n) SO(n) = P

- 5¢:= Q° Xgpinc C1" is bundle of right C1"-modules
- have (R")* ® C1™ — C1" - left multiplication (and dualization using metric)
— induces Clifford multiplication ¢ : TM* ® S¢ — 5S¢ induced by left multiplication

- choose connection V5 on S¢ which refines Levi-Civita connection

Proposition 4.112. (S¢,V*° ¢) is a Dirac bundle of degree dim(M).

Spin(n) C Spint(n) - a two-fold covering of SO(n)

Definition 4.113. A Spin structure is a reduction of the structure group of Q° to Spin(n).

- get Dirac bundle S := @ X gpin(n) C1"
- has an additional real structure

- in this case V¥ is unique: called the Spin connection O

concider Dirac bundle (E, ¢, VF) of degree n
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Definition 4.114. The Dirac operator associated to the Dirac bundle is defined as the

composition
D:=coV:I'(S) > T(M, T"M ® S) — I'(S)

- it is C1™-linear
first order G-invariant Differential operator

- a(D)*(€) = [&l1?
Lemma 4.115. D is formally selfadjoint on L*(M, E)

an unbounded operator is essentially selfadjoint if its closure is selfadjoint

Lemma 4.116. D is essentially selfadjoint with domain T'y(X,S) on H := L*(X,S)

consider H := L*(M, E) as equivariant M-controlled Hilbert space

D

- can form e? - wave operator, unitary in B(H )%

Theorem 4.117 (finite propagation speed). e is controlled with propagation |t|

f € Go(R)

- assume [ € C.(R)

- fix R with supp(f) C [-R, ]

- €)= g Ju SRt

- f(D) = \/Lz*ﬂ Ja F(t)e"Pdt has propagation R

- f(D) is G-invariant

- f(D) is locally compact by Rellichs theorem

- conclude: f(D) € C*(M, H, $)¢

by density: f(D) € C*(M, H, )¢ for any f in Cy(R)
- get homomorphism S — C*(M, H, $)¢

- extends to i(D) : S&C1" — C*(M, H, $)°
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Definition 4.118. The class of i(D) in KK(S®C1", C*(M, H, ¢)°) = K_,(C*(M, H, $)%)
is called the equivariant coarse index class indexX (D) of D.

if G acts properly, then indexX € KX (M) naturally

Example 4.119. special case:
- M compact
- G trivial

- C*(M, H,¢)° = K

1%

- get class indexX' (D) in K_,(K) { Z n even

0 n odd
this is usual index of Dirac operator

Definition 4.120 (Atiyah-Singer). The index of the Spin-Dirac operator is given by

~

(A(TM), [M]).

here A(TM ) - a characteristic class of T M

- can be expressed in terms of Pontrjagin classes (Chern class of TM ® C)

there is a similar formula for the general case:
-E=ESeV

— for V' - an auxiliary bundle (with metric and connection)
- indexX (D?) = (A(TM) U Ch(V), [M])

see [BGV04] for details O

Remark 4.121 (the K-homology class of a Dirac operator).
there is a more basic class [D] € KK (Cy(M) ® €1, C)
- it is called the K-homology class of D

- is a class in KE _, (M)

represented by a graded Kasparov module (L*(M, E), F, ¢)
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-¢: Co(M)®C1" — B(H) action by multiplication operators

o D
-F= gt

- use [Mey00, Sec. 5 and 7] in order translate Kasparov modules to maps from S ®Co(M) ®
C1" to B(H)

the coarse way:

Kx©

—n—1

(O=(M)) = K& _, (M)

-O*(M)=Rx M

- warped product metric

-g=dt* + f(t)g, f(t) =1fort <0 and f(t) =¢*for t >> 0
- canonical D extension of D

— a selfadjoint deformation of e, 19, + D

- 1s Cl,41-equivariant

[D] corresponds to indexX' (D) under isomorphism above

- for details on this approach: [Buni§]

back to the general case:

- D for a Dirac bundle

Lemma 4.122. If the spectrum of D has a gap at 0, the indexX (D) = 0.
Proof. assume gap at 0

- f(D) does not depend on values of f near 0

- f = f(D) extends from f € Cy(R) to Cy(—o0, 0] & Cy0, 00)

- KK (Cy(—o00,0] @ Co[0, 00) @ C1,,, C*(M, H,$)¢) = 0

— since Cy(—00, 0] & Cy[0, 00) is contractible O
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Example 4.123 (application to spin Dirac operator).
M - oriented Riemannian complete spin

- G acts by automorphisms

- D - spin Dirac operator

- D? = A + £ (Lichnerowicz formula)

s - scalar curvature function

if s > ¢ >0, then o(D) N (—c,c) =10

- indexX (D) =0

Remark 4.124. indexX (D) only depends on the smooth spin manifold and coarse class
of the metric

- if indexX (D) # 0, then there is no metric with uniformly positive scalar curvature on
the coarse equivalence class

Example 4.125. R" with flat metric

- known: indexX (D) # 0

— construct non-trivial pairings with K-theory classes on Higson corona

— see [Bun23, Ex. 7.6]

- there is no metric in the coarse class of the flat metric of uniformly positive scalar

curvature

every Z"-periodic metric is in this class
Corollary 4.126. T™ does not admit a metric of positive scalar curvature

Remark 4.127. M compact spin
- indexX (D) = (A(TM),[M]) is a smooth invariant of M

— does not depend on metric

- a(M) # 0 obstructs the existence of metric with positive scalar curvature O

Example 4.128 (coarse K-theory of free cocompact G-spaces).
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assume:
- GG acts cocompactly and freely on X

- (H, ) - ample

Lemma 4.129. C*(X, H,$)% =2 C*(G) @ K

KX9(X) 2 K(CHG)

a formal way to see this:
- Geanmin — X, g — g is a coarse equivalence

- KXY (G eanmin) = K(C*(Q)) by explicit calculation

4.3.3 Consequences of the Baum-Connes conjecture

for more information see: [MV03], [GAJVI9],

Example 4.130 (The Gromov-Lawson-Rosenberg conjecture).
G - a group

- M closed connected Spin-manifold with m (M) = G

—n = dim(M)

- M — M universal covering

- choose metric on M

— get G-invariant metric on M

- D*P™ _ Spin-Dirac operator

- indexX (D) € KX_,(M) = K_,(C!(Q))

since work with spin: all this has real version

- define ag(M) := indexX (D) € KO_,(Crr(G))
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Corollary 4.131. If M admits psc-metric, then ag(M) = 0.

Conjecture 4.132 (Gromov-Lawson-Rosenberg ). If ag(M) =0, then M admits a psc
metric.

has counter examples by Th. Schick

need modification:

- consider Bott manifold B:

- compact, spin, dim(B) = 8, m(B) =1

- indexX (D) = Br € KO_g(R) Bott element - invertible element

- Oég(M)BR = Oég(M X B)

Conjecture 4.133 (modified Gromov-Lawson-Rosenberg conjecture). If ag(M) = 0,
then M x B admits a psc metric for sufficiently large d.

have map equivariant map f : M — EG

- unique up to homotopy

- [D#*Pin] € KKOC, (Co(M,R),R) = KO_,,(M) - equivariant K-homology class of D"
- f.[D*'"] € RKKO%(EG,R,R) = KO_,(BG)

- under KO,(BG)q = H.(BG,Q[p|) with |p| = 4 this class is

Atiyah-Singer index theorem: f,[D*"]q = f.([M] N A(TM))

Conjecture 4.1347(Gromov—Lawson—Rosenberg). If ]\7{ admits a metric of positive scalar
curvature, then f,[D**"] = 0. In particular (f.([M]NA(TM)) = 0.

- higher A-genera of M vanish

—in general: even if D is invertible the class [D] can be non-zero

—uéﬁ%(Dsm") = ag(M) € KO_,(Cf ,(G)) - real version of Kasparov assembly map

Corollary 4.135. Assume that ué{fl{s% (the real version) is injective (e.g. G admits a
y-element). Then if M admits a psc metric, then f,[D*™"] =0 in KO_,(BG).
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this says that f,[D*P"] = 0 is necessary condition
- f.[D*"] = 0 in KO_,(BG) is very close to existence of psc metric

- e.g. for trivial group: Stolz

Example 4.136 (signature operator).

M oriented

dim(M) = 2[ even

E=@; ANT*M

- has Dirac bundle structure of degree 0

- grading on p-forms by PP~V on APT*M
— there exists a Dirac bundle structure

- Dirac operator d + d* = Dsie

- get class index X (D®®) € KXE(M)

Proposition 4.137. If M is compact and | is even, then indexX (D%#") = sign(M).

fix G

- consider M compact connected manifold with G = 7, (M)
- M — M universal covering

- G-action

- f: M — BG classifying map

- D38 gives rise to class [D**] € KKo(C(M),C) = Ko(M) - K-homology
Conjecture 4.138 (Novikov-Conjecture). The class f.[D%*€"|q in Ko(BG)q only depends
on the homotopy type of M.

under K,(BG)g = Hey(M, Q)
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- fD¥E g = fi([M] N L(TM))
— L(TM) - characteristisc class of tangent bundle
— apriori depends on smooth structure

— actually only on topological manifold

Conjecture 4.139 (Novikov-Conjecture). The class f.([M] N L(TM)) in He(BG,Q)
only depends on the homotopy type of M.

- D& _ signature operator on M

- [Dsier] = [ D& under this iso

Theorem 4.140 (Mischenko-Fomenko). The class indexX (D*€") € Ky(C;(G)) is a
homotopy invariant of M.

Corollary 4.141. If ugfcsfc 1s rationally injective, then the Novikov conjecture holds for
G.

Example 4.142 (L*-index theorem).
M closed compact, connected
-m(M)=G

- D - Dirac operator of degree 0

- indexX (D) € KXy(M) = Z

- M - universal covering

- D - G-invariant

- indexX (D) € KXy(M) = Ko(CHQ))

tr: CHG) —»C
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- = fle)
- is faitful: @ € C*, @ > 0 and tr(a) = 0 implies a = 0

-tr(1) =1

get induced map tr : Ko(CH(G)) = R

- [p] = tx(p)

- extend tr to matrix algebras

Theorem 4.143 (Atiyah L*index theorem).

tr(indexX (D)) = indexX (D) .

Example 4.144 ( Kadison-Kaplansky conjecture).

Conjecture 4.145. If G is torsion-free, then C*(G) does only have the trivial projections
0 and 1.

Proposition 4.146. If ugfcs% 1s surjective, then the Kadison-Kaplansky conjecture holds.

Proof. claim: if p is projection in C}(G), then tr(p) € Z
assume claim:

-note: 0 <p<1

- hence tr(p) € {0,1}

- trace faithful

- hence p € {0,1}

show claim:

Kas
p= Mc,cfc(x)

_ 2 € RKK,(EG, C,C)
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- there exists Spin®-manifold M of even dimension
- exists map f: M — BG (classifying M)

-M — EG

-z = fi([DP™])

- ugﬁ%(x) = indexX (D) in Ky(CH(Q))

- Atyiah L%index theorem tr(p) = tr indexX (DP"™) = indexX (D*P"") € Z

why do we need G to be torsion-free:
assume G has torsion element g
- order n

- q =) i o 1" is non-trivial projection

1=
-1
-tr(g) = 5
- so assumption on torsion of GG is necessary

Question: Does tr : K(C¥(G)) — R take values in 1/nZ where n is the is the common
multiple of torsion

Corollary 4.147 (A consequence of Kadison-Kaplansky). Q[G] has no non-trivial idem-
potent

Example 4.148 (Zero-in-the -spectrum conjecture).

M - compact aspherical

Conjecture 4.149. 0 is in the spectrum of of one of the Hodge Laplacians on M

G = T (M)

Proposition 4.150. injectivity of the Assembly map implies the zero-in Zero-in-the

-spectrum conjecture

Proof. assume: dim(M) is even
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note: (Dsien)2 = PImM A

n=0

argue by contradiction

- then Ds8" is invertible

use: [D®'8%] £ 0 in Ko(M)

- even rationally by Atiyah-Singer

- since [M|NL(TM) # 0

- look at degree-dim(M )-component which is [M]

pEER(D*) = indexX (D) = 0

contradiction

for even case cross with circle

Farber-Weinberger: there exists non-aspherical examples with no zero in the spectrum
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