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1 Intro to the course

2 G-C∗-algebren

2.1 Basic Definitions

2.1.1 G-C∗-algebras

G - a group
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- BG category with one object ∗ and automorphisms G

Definition 2.1. We define the category of G-C∗-algebras as GC∗Algnu := Fun(BG,C∗Algnu).

explicitly:

- objects: C∗-algebras A with action α : G→ AutC∗Algnu(A)

– write (A,α)

– g 7→ αg

– αgh = αg ◦ αh for all g, h in G

- morphisms: f : (A,α)→ (B, β)

– f : A→ B - morphism of C∗ algebras

– condition: f(αga) = βgf(a) for all g in G

this is good for discrete groups

- for topological group G: use topological enrichment to put continuity requirement

- BG is topologically enriched

– HomBG(∗, ∗) ∼= G

- C∗Algnu is topologically enriched

– HomC∗Algnu(A,B) has point-norm topology

- write Func for functors in the enriched sense: continuous on topological mapping spaces

Definition 2.2. For a topological group we define the category of G-C∗-algebras as
GC∗Algnu := Func(BG,C

∗Algnu).

explicitly:

- additional requirement: G 3 g 7→ αg(a) ∈ A is continuous for every a in A

note: α : G→ Aut(A) is not necessarily continuous for the norm topology
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2.1.2 First examples

trivial action:

- A in C∗Algnu

- set αg := idA for all g in G

- get (A,α) in GC∗Algnu

- often denoted by A

X locally compact space

- ρ : G×X → X continuous G-action

- αg : C0(X)→ C0(X)

- (αgf)(x) := f(ρg−1(x))

- is continuous

– get (C0(X), α) in GC∗Algnu

even better: Gelfand duality is topologically enriched

AutC∗Algnu(C0(X)) ∼= AutTop(X)

- compact open topology on AutTop(X)

- point-norm topology in AutC∗Algnu(C0(X))

some warnings:

note: in general G does not act continuously on Cb(X)

Problem 2.3. Show that the action of R on Cb(R) is not continuous.

- G→ Aut(C0(X)) is not norm continuous

Problem 2.4. Let Tu be the translation by u in U(1). Show that ‖Tu − id‖ = 2 if u 6= 1.
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recall multiplier algebra M(A) of A

- hast strict topology:

- mi → m if mia→ ma in norm for all a in A

ρ : G→ U(M(A)) homomorphism

- continuous for the strict topology

- define α : G→ Aut(A)

– αga := ρgaρg−1

– g 7→ αg is continuous

- get (A,α) in GC∗Algnu

ρ : G→ U(H) unitary representation of G on Hilbert space

- assume ρ is strongly continuous (will always be assumed)

– means: (g, h) 7→ ρgh is norm continuous for all h in H

Problem 2.5. Recall that B(H) = M(K(H)). Show that the strict and the strong topology
on U(B(H)) coincide.

- hence ρ is strictly continuous

- for any G-invariant (under conjugation) subalgebra A of K(H)

- (A,α) in GC∗Algnu

– αga := ρgaρg−1

Example 2.6. it is not natural to require that ρ is norm continuous

- G×X → X continuous on locally compact space

– Lg : X → X action of g in G

- µ a G-invariant Radon measure
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– recall Radon measure:

— finite on compact sets

— µ(C) = infC⊆U µ(U) (outer regular)

— µ(U) = supK⊆U µ(K) (inner regular on opens)

– means: Lg,∗µ = µ for all g in G

- L2(X,µ) has unitary G-action

– (ρgf)(h) := f(g−1h)

– unitary:
∫
G
|f(g−1h|2µ(h) =

∫
G
|f(h)|2Lg,∗µ(g) =

∫
G
|f(h)|2µ(g)

– also notation: Lg,∗µ(h) = µ(gh)

- ρ : G→ U(L2(X,µ)) is strongly continuous, but in general not norm continuous

Problem 2.7. Show these assertions.

2.1.3 Categorical properties of GC∗Algnu

recall: C∗Algnu is complete and cocomplete

have forgetful functor GC∗Algnu → C∗Algnu

Corollary 2.8. The forgetful functor GC∗Algnu → C∗Algnu is conservative.

Corollary 2.9. For a discrete group G the category GC∗Algnu is complete and cocomplete
and GC∗Algnu → C∗Algnu preserves limits and colimits.

for a diagram A : I → C∗Algnu

- limit or colimit is formed in C∗Algnu

- gets induced G-action

for topological group:
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- colimI A has induced G-action

- it is again continuous

Problem 2.10. Show that the induced G-action on a colimit of G-C∗-algebras is continu-
ous.

Lemma 2.11. For a topological group the category GC∗Algnu is cocomplete and GC∗Algnu →
C∗Algnu preserves colimits.

- limI A also has an induced G-action

– this is not always continuous

Example 2.12. U(1) is a topological group

- C(U(1)) has actions αn given by (αn,uf)(v) := f(unv)

- action on
∏

n∈N(C(S1), αn) is not continuous

Problem 2.13. Show this assertion.

but finite limits are ok

Lemma 2.14. GC∗Algnu is finitely complete and GC∗Algnu → C∗Algnu preserves limits.

Problem 2.15. Show Lemma 2.14.

Proposition 2.16. GC∗Algnu has all products.

Proof. ((Ai, αi))i∈I family in GC∗Algnu

- form
∏

i∈I Ai in C∗Algnu

- get induced G-action α

- αg :=
∏

i∈I αi,g

- g 7→ αgf is not continuous in general

- call f continuos if this is the case

(
∏

i∈I Ai)
c subset of continuous elements

- observe: is G-invariant closed ∗-subalgbera
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Problem 2.17. Show this assertion.

αcg - restriction of αg to continuous elements

claim: ((
∏

i∈I Ai)
c, αc) represents products

check universal property:

(fi : (T, β)→ (Ai, αi)) given

- induced map f : T →
∏

i∈I Ai is G-equivariant such that pri ◦ f = fi

- takes values in continuous elements

- ‖αgf(t)− f(t)‖ = supi∈I ‖αi,gfi(t)− fi(t)‖ = supi∈I ‖fi(βgt− t)‖ ≤ ‖βgt− t‖

– use that fi is contractive for every i

Corollary 2.18. For every topological group the category GC∗Algnu is complete and
cocomplete.

G -topological

- Gδ - G with discrete topology

- (A,α) in GδC∗Algnu

define Ac := {f ∈ A | G 3 g 7→ αgf is continuous}

Lemma 2.19. Ac is a sub-C∗-algebra and α|Ac is continuous.

Proof. f, f ′ in Ac implies that f + λf ′, ff ′ and f∗ belong to Ac

- since operations of A are continuous

- αg preserves Ac by associativity

Ac is closed ai → a, ai ∈ Ac implies a ∈ Ac

- ‖αga− a‖ ≤ ‖αg(a− ai)‖+ ‖αgai − ai‖+ ‖ai − a‖
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– first chose i to make ‖ai − a‖ small

– then also ‖αg(a− ai)‖ is small independently of g

– then choose g to make ‖αgai − ai‖ small

(A,α)

Proposition 2.20. Show that there is a right Bousfield localization

ResGGδ : GC∗Algnu � GδC∗Algnu : (−)c .

Proof. HomGC∗Algnu(A,Bc) ∼= HomGδC∗Algnu(ResGGδA,B)

it is clear that HomGC∗Algnu(A,Bc) ⊆ HomGδC∗Algnu(ResGGδA,B)

given f ∈ HomGδC∗Algnu(ResGGδA,B)

- claim f takes values in Bc

- αgf(a) = f(βga)

– use g 7→ βga is continuous

the following are egeneral facts following from the Bousfield localization

Corollary 2.21. GC∗Algnu is complete and cocomplete. Colimits are calculated in
GδC∗Algnu and limits are given by the composition (limG

δC∗Algnu
ResGGδ(−))c.

2.1.4 Two-categorical structure

C∗Algnu has some two categorical structure

- f, g : A→ B

- could be conjugated by u in M(B): f = ugu∗

- turns HomC∗Algnu(A,B) into a category Fun(A,B)

- composition of 2-morphism u with 1-morphism h is only partially defined: h ◦ u :=
M(h)(u)
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– needs h to be essential

(A,α), (B, β) in GC∗Algnu

- G acts on Fun(A,B) by conjugation

- g∗f := β−1
g ◦ f ◦ αg

f : (A,α)→ (B, β)

- f can be equivariant

- f ∈ Fun(A,B)G - one-categorical invariants

- g∗f = f

– f ◦ αg = βg ◦ f

could also require f ∈ Fun(A,B)hG - two categorical invariants

– f is weakly equivariant:

– f extends to pair (f, ρ)

— ρ : G→ U(M(B)) strictly continuous

— cocylcle relation: βh(ρg)ρh = ρhg

— g∗f = ρg · f · ρ∗g for all g in G

– ρg : f
∼=→ g · f

2.1.5 Tensor products

consider ? in {min,max}

− ⊗? − : C∗Algnu × C∗Algnu → C∗Algnu is enriched bifunctor

- get induced tensor product −⊗? − : GC∗Algnu ×GC∗Algnu → GC∗Algnu

Corollary 2.22. ⊗? equips GC∗Algnu with a symmetric monoidal structure.
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the tensor products inhertis the exactenss properties from the non-equivariant case

- ⊗max preserves exact sequences

- ⊗min preserves inclusions

2.2 Induction and Restriction

additional richnesss of equivariant theory comes from change of group functors

2.2.1 Restriction

φ : H → G continuous homomorphism

get restriction functor

- φ∗ : GC∗Algnu → HC∗Algnu

- φ∗(A,α) := (A,α ◦ φ)

write often ResGH := φ∗ - in particular if φ is inclusion of a subgroup

forgetful functor GC∗Algnu → C∗Algnu is special case

2.2.2 Induction

assume:

- G locally compact

- H → G inclusion of closed subgroup

– G/H - locally compact space

A in HC∗Algnu with H-action α

- consider space of bounded continuous functions f : G→ A such that:

– f(gh) = αh−1f(g) for all h in H
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– prG/H(supp(f)) is compact

- form closure wr.t. norm ‖f‖ := supg∈G ‖f(g)‖ in Cb(G,A)

- denote resulting C∗-algebra by IndGH(A)

- has continuous G-action (ρgf)(g′) := f(g−1g′)

continuity not completely obvious: supp(f) is not compact on G in general

Problem 2.23. Show continuity of G-action

extend IndGH to morphisms:

φ : A→ A′

- define IndGH(f) : IndGH(A)→ IndGH(A′)

– Ind(φ)(f) := φ ◦ f

Definition 2.24. The functor IndGH : HC∗Algnu → GC∗Algnu is called the induction
functor.

Example 2.25.

C0(G) ∼= IndG1 (C)

C0(G/H) ∼= IndGH(C)

H can be open and closed

- the connected component of G

- any subgroup if G discrete

- a clopen subgroup if G totally disconnected, e.g. Zp

have natural transformation

b : id→ ResGH ◦ IndGH

- bA : A→ ResGH(IndGH(A))
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- bA(a)(g) :=

{
αh−1a h ∈ H

0 else

looks like unit of adjunction, no obvious counit IndGH ◦ ResGH(A))→ A

2.2.3 Coinduction

assume: G/H is compact or G discrete

consider again subspace Cb(G,A)H := {f ∈ Cb(G,A) | (∀h ∈ H | αhf(gh) = f(g))}

- has G-action by left-regular representation

- CoindGH(A) := (Cb(G,A)H)c - continuous vectors

- φ : A→ B homomorphism

– induces CoindGH(φ) : CoindGH(A)→ CoindGH(A), f 7→ φ ◦ f

get coinduction functor CoindGH : HC∗Algnu → GC∗Algnu

- if G/H is compact, then IndGH = CoindGH(A)

- have natural transformation

- c : ResGH ◦ CoindGH → id

– cA(ResGH(CoindGH(A))→ A, f 7→ f(e)

looks like counit of an adjunction

- indeed have unit e : CoindGH ◦ ResGH → id

– eA : A→ CoindGH(Res(A))

– eA(a)(g) := αg−1a

Proposition 2.26. We have an adjunction

ResGH : GC∗Algnu � HC∗Algnu : CoindGH .

Problem 2.27. Show Proposition 2.26
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2.2.4 multiplicative induction

Z - finite G-set

- can define A⊗Z :=
⊗

Z A

- get G-action by permutations of tensor factors

- A⊗Z ∈ GC∗Algnu

for unital A can assume Z infinite

- for finite subset F of Z consider
⊗

F A

- for F → F ′ inclusion

– use unit to define
⊗

F A→
⊗

F ′ A

– ⊗f∈Faf 7→ ⊗f∈Faf ⊗⊗x∈F ′\F1A

–
⊗

Z A := colimF⊆Z ,|F<∞|
⊗

F A

– get G-action by permutation of tensor factors

⊗
Z Mat2(C) - spin chain

2.3 Crossed products

2.3.1 Haar measures

X - locally compact space

- µ - Radon measure

– properties:

— finite on compact sets

— µ(C) = infC⊆U µ(U) (outer regular), U runs over open subsets
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— µ(U) = supK⊆U µ(K) (inner regular on opens), K runs over compact subsets

- µ determined by the functional Cc(X)→ C

– f 7→
∫
X
f(x)µ(x)

φ : X → X ′ proper map

- φ∗ : Cc(X
′)→ Cc(X)

- φ∗ - push-forward of measures

– defining relation:
∫
X′
f(x′)(φ∗µ)(x) =

∫
X
f(φ(x))µ(x)

G - locally compact group

- µ - Radon measure on G

Lg,∗µ

- say µ is left invariant if Lg,∗µ = µ

– means for all f in Cc(G) and g in G

∫
G

f(g−1h)µ(h) =

∫
G

f(h)µ(h)

Definition 2.28. A non-zero left invariant Radon measure on G is called a Haar measure.

Theorem 2.29. On G there is a unique (up normalization) Haar measure on G.

Remark 2.30. have natural normalization in some cases:

- for compact G:
∫
G
µ(g) = 1

- for infinite discrete groups: µ({e}) = 1

Example 2.31.

G discrete: counting measure:
∑

g∈G δg is a Haar measure

Rn - Lebesgue measure is a Haar measure

G - a Lie group
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- choose vol ∈ Λmaxg∗

– extends uniquely to left invariant volume form (L∗g−1vol)(g) := vol

- defines Haar measure by
∫
G
f(g)µ(g) =

∫
G,or

f(g)vol(g)

µ - Haar measure

- in general µ is not right invariant

-
∫
G
f(h)Rg,∗µ(h) =

∫
G
f(hg)µ(h)

- Rg,∗µ is left invariant, Radon

– by uniqueness of Haar measure: there exists ∆(g) in R+ such that Rg,∗µ = ∆(g)µ

Proposition 2.32. ∆ : G→ R∗+ is a continuous homomorphism.

Example 2.33.

G is called unimodular if ∆ = 1

- compact groups

- discrete groups

- abelian groups

- for a Lie group: if det Ad : G→ Aut(g)→ R∗ is constant 1

Example 2.34. Consider ax+ b-group Ro R∗

- determine Haar measure and ∆ explicitly

I : G→ G - inversion

- I∗µ = ∆−1µ

–
∫
G
f(g−1)µ(g) =

∫
G
f(g)∆(g)−1µ(g)

– I∗µ, ∆−1µ are right invariant

– conclude: I∗µ = c∆−1µ for some constant c

16



– apply I∗ again:

– get µ = c2∆∆−1µ = c2µ

– conclude c = 1

2.3.2 The maximal crossed product

- A in GC∗Algnu

- consider Cc(G,A) with convolution product

- (f ∗ f ′)(g) :=
∫
G
f(h)αh(f

′(h−1g))µ(h)

Problem 2.35. Check associativity

(f ′′ ∗ (f ∗ f ′))(g) =

∫
G

f ′′(h)αh(

∫
G

f(h′)αh(f
′(h′,−1h−1g))µ(h′))µ(h)

=

∫
G

∫
G

f ′′(h)αh(f(h′))αhh′(f
′(h′,−1h−1g))µ(h′))µ(h)

=

∫
G

∫
G

f ′′(h)αh(h
−1l)αl(f

′(l−1g))µ(l)µ(h)

=

∫
G

(

∫
G

f ′′(h)αh(h
−1l)µ(h))αl(f

′(l−1g))µ(l)

= ((f ′′ ∗ f) ∗ f ′)(g)

define ∗-operation: f ∗(g) := αg(f(g−1)∗)∆(g)−1

Problem 2.36. Check (f ∗)∗ = f and (f ′ ∗ f)∗ = f ∗ ∗ f ′,∗.

Proof. (f ∗)∗(g) = αg(f
∗(g−1))∆(g)−1 = αg(αg−1(f(g)))∆(g)−1∆(g−1)−1 = f(g)
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(f ′ ∗ f)∗(g) = αg(

∫
G

f ′(h)αh(f(h−1g−1))µ(h))∗∆(g)−1

=

∫
G

αgh(f(h−1g−1))αg(f
′(h))∗µ(h)∆(g)−1

=

∫
G

αl(f(l−1))αg(f
′(g−1l))∗µ(l)∆(g)−1

=

∫
G

αl(f(l−1))∆(l)−1αlαl−1g(f
′((l−1g)−1)∗)∆(l−1g)−1µ(l)

= f ∗ ∗ f ′,∗

G acts by multipliers on Cc(G,A)

- (h ∗ f)(g) := αhf(g−1h)

- (f ′ ∗ h)(g) := f ′(gh)

- h∗ = h−1

A acts by multipliers

- (a ∗ f)(g) := af(g)

- (f ∗ a)(g) := f(g)αg−1(a)

Problem 2.37. Check f ′ ∗ (h ∗ f) = (f ′ ∗ h) ∗ f and (f ′ ∗ a) ∗ f = f ′ ∗ (a ∗ f).

Check: h ∗ a ∗ h−1 = αh(a) in multipliers

Proposition 2.38. Cc(G,A) with the convolution product and the involution as indicated
is a pre-C∗-algebra.

Proof. Exercise for discrete groups.

For non-discrete groups

- consider non-degenerated representation φ : Cc(G,A)→ B

– means: Cc(G,A)B ⊆ B dense

- get homomorphism ρ : G→ U(M(B))
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- get homomorphism ψ : A→M(B)

– have equality φ(f) =
∫
G
ψ(f(g))ρgµ(g)

- get bound: ‖φ(f)‖ ≤ ‖f‖L1(G,A)

Definition 2.39. We define the maximal crossed product AoG := compl(Cc(G,A)).

Proposition 2.40. We have a functor −oG : GC∗Algnu → C∗Algnu.

Proof. A 7→ Cc(G,A) is functor GC∗Algnu → C∗preAlgnu

- φ : A→ B maps to f 7→ (g 7→ φ ◦ f)

Remark 2.41. −oG is functorial for weakly equivariant maps

(φ, ρ) : A→ B weakly equivariant A→ B

- define f 7→ (g 7→ ρgφ(f(g)))

2.3.3 Covariant representations

(A,α) in GC∗Algnu

Definition 2.42. A covariant representation of A is a pair (φ, ρ) of a unitary representa-
tion ρ : G→ U(H) and a homomorphism φ : A→ B(H) such that φ(αga) = ρgφ(a)ρ∗g for
all g in G and a in A.

note that conjugation action on B(H) is not continuous in general

- can therefore not say that φ is just morphism in GC∗Algnu

- get map φ̄c : Cc(G,A)→ B(H)

- φ̄c(f) :=
∫
G
φ(f(g))ρgµ(g)

Problem 2.43. Show that this is a ∗-homomorphism.

φ̄c is called the integrated form of (ρ, φ)

- extends to φ̄ : AoG→ B(H)
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Definition 2.44. (φ, ρ) is non-degenerated if φ(A)H is dense in H.

Proposition 2.45. There is a bijection between the sets the non-degenerated covariant
representation (φ, ρ) of (A,G) and non-degenerated representations φ̄ : AoG→ B(H)

Proof. given (φ, ρ) construct φ̄c and finally φ̄

A and G act as multipliers on AoG

given φ̄ - construct φ : A→ B(H) and ρ : G→ U(H) as above

Remark 2.46. if (φ, ρ) is not non-generated, then lose the information about ρ on
(φ(A)H)⊥

2.3.4 The reduced crossed product

choose an injective representation ψ : A→ B(H)

- consider ρ : G→ U(B(L2(G,H)) given by (ρhv)(g) = v(h−1g)

- define representation φ : A→ B(L2(G,H)) by (φ(a)v)(g) := ψ(αg−1a)v(g)

– check: (φ, ρ) is covariant

(ρhφ(a)ρh−1v)(g) = (φ(a)ρh−1v)(h−1g)

= ψ(αg−1ha)(ρh−1v)(h−1g)

= ψ(αg−1ha)v(g)

= φ(αha)v(g)

the covariant representation induces Cc(G,A)→ B(L2(G,H))

- get norm ‖ − ‖r in Cc(G,A) - called the reduced norm

Definition 2.47. We define the reduced crossed product Aor G := Cc(G,A)
‖−‖r

.

get functor −or G : GC∗Algnu → C∗Algnu

Problem 2.48. Show that ‖ − ‖r is independent of choice of ψ.
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Problem 2.49. Show that AorG extends naturally to a functor which preserves injections.

have canonical morphism AoG→ Aor G

2.3.5 Further aspects and examples

Example 2.50.

C∗(G) := CoG -maximal group C∗-algebra

C∗r (G) := Cor G - reduced group C∗-algebra

Remark 2.51 (Fourier transformation).

G abelian

- Ĝ - dual group of characters

- Fourier transformation

- f 7→ f̂

– f̂(ξ) =
∫
G
ξ−1(g)f(g)µ(g)

- dual Fourier transformation

– ȟ(g) :=
∫
Ĝ
h(ξ)µ̂(ξ)

- normalize µ̂ on Ĝ such that

-
ˇ̂
f = f

Example 2.52.

Ẑ ∼= U(1)

Û(1) ∼= Z

̂discrete group = compact group

counting measure corresponds to normalized Haar measure

R̂ ∼= R
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|̂ − | = 1
2π
| − | (Lebesguemeasure)

Lemma 2.53. The Fourier transformation induces an isomorphism C∗(G) ∼= C0(Ĝ)

Example 2.54 (dual group action). Ĝ acts on AoG

- (ξ, f) 7→ (g 7→ ξ(g)f(g)

- (ξf) ∗ (ξf ′) =
∫
G
ξ(h)f(h)αh(ξ(h

−1g)f ′(h−1h))dµ(h) = ξ(g)
∫
G
f(h)αh(f

′(h−1g))µ(h) =
(ξ(f ∗ f ′))(g)

- (AoG) o Ĝ ∼= K(L2(G))⊗ A (Takai duality)

Example 2.55 (G-graded algebras). G finite

Definition 2.56. A G-graded algebra is a C∗-algebra with a decomposition A ∼=
⊕

g∈GAg
such that AgAg′ ⊆ Agg′ for all g, g′ in G and A∗g ⊆ Ag−1.

AoG is G-graded

- AoG ∼=
⊕

g∈GA

- write elements as (g, A)

- (g, a) ∗ (g′, a′) = (gg′, αg(a)a′

G-grading is same information as action of Ĝ (for G abelian)

- (AoG)g is image of action of projection p :
∫
Ĝ
ξ(g)−1α̂ξµ̂(ξ)

Example 2.57 (finite groups).

G finite

- L2(G) ∼=
⊕

π∈Ĝ Vπ ⊗ V ∗π - Peter-Weil

- C∗(G) generated by Lg = ⊕π∈Ĝπ(g)⊗ idVπ

- projection to factor Vπ ⊗ V ∗π is in C∗(G)

– given by
∫
G
χπ(g)−1Lgµ(g) (where χπ is the character)
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- hence π(g)⊗ idVπ is in C∗(G)

- Schur Lemma: End(Vπ)⊗ idV ∗π is in C∗(G)

- C∗(G) ∼=
⊕

π∈Ĝ End(Vπ) - sum of matrix algebras

- K∗(C
∗(G)) ∼= Z[Ĝ] representation ”ring”

3 KKG

3.1 Homotopy invariance

3.1.1 The localization

start with GC∗Algnu

- category is topologically enriched

- write HomG(A,B) for the topological mapping space

- HomG(A,B) = Hom(A,B)G - G-fixed points with conjugation action

– HomTop(X, Hom(A,B)) = HomC∗Algnu(A,C(X)⊗B) for all compact spaces X

get notion of homotopy equivalence

Definition 3.1. We define the Dwyer-Kan localization Lh : GC∗Algnu → GC∗Algnu
h at

the homotopy equivalences.

the following are proved the same way as in the non-equivariant case

Proposition 3.2.

1. MapGC∗Algnu
h

(A,B) ' `HomG(A,B).

2. Lh is symmetric mononidal for ⊗? with ? in {max,min}.

3. Lh sends Schochet fibrant squares to pull-back squares.

4. GC∗Algnu
h is left-exact.

5. The bifunctor ⊗? on GC∗Algnu
h is bi-left-exact.
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6. GC∗Algnu
h has all coproducts and Lh preserves them.

L∗h : Fun(GC∗Algnu
h ,D)

'→ FunWh(GC∗Algnu,D)

L∗h : Funlex(GC∗Algnu
h ,D)

'→ Funh,Sch(GC∗Algnu,D)

L∗h : Fun⊗(lax)(GC
∗Algnu

h ,D)
'→ Fun⊗,Wh

(lax) (GC∗Algnu,D)

L∗h : Fun⊗,lex
(lax) (GC∗Algnu

h ,D)
'→ Fun⊗,Sch(lax) (GC∗Algnu,D)

Ω ◦ Lh ' Lh ◦ S loops and suspension

Puppe sequence for f : A→ B

· · · → Lh(S(C(f)))
Ω(if )
−−−→ Lh(S(A))

S(f)−−→ Lh(S(B))
∂f−→ Lh(C(f))

if−→ Lh(A)
Lh(f)−−−→ Lh(B)

each segment is fibre sequence

the verifications are completely analogous as in the non-equivariant case

3.1.2 Descend of functors

H → G

G ⊆ L

consider functors: ResGH , IndLG, CoindLG, −oG, −or G

Lemma 3.3. The functor ResGH , IndLG, − o G, − or G functors refine to topologically
enriched functors.

for CoindLG is is only true if L/G is compact

- this case is then covered by IndLG

use: F : GC∗Algnu → G′C∗Algnu a functor

Proposition 3.4. If there is a natural transformation F (A ⊗ B) ∼= F (A) ⊗ B for all
commutative algebras B such that F (A) ∼= F (A⊗ C) ∼= F (A)⊗ C ∼= F (A) is the identity,
then F is topologically enriched.
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Proof.

HomTop(X, HomG(A,B)) ∼= HomG(A,B ⊗ C(X))

→ HomG′(F (A), F (B ⊗ C(X)))
∼= HomG′(F (A), F (B)⊗ C(X))
∼= HomTop(X, HomG′(F (A), F (B)))

use additional property to check that this map is the correct one on underlying sets

Lemma 3.5. We have for any C∗-algebra B and choice of tensor product that

ResGH(A⊗B) ∼= ResGH(A)⊗B .

Proof. obvious

H ⊆ G

Lemma 3.6. For B in C∗Algnu, A in GC∗Algnu and ? ∈ {min,max} we have

IndGH(A)⊗? B ∼= IndGH(A⊗? B) .

Proof. - not completely obvious

- ι : Cb(G,A)⊗? B → Cb(G,A⊗? B) is a map

- but not an isomorphism in general

- similarly ι : IndGH(A)⊗? B → IndGH(A⊗? B)

for surjectivity:

f ∈ IndGH(A⊗? B)

- choose function χ on G with proper support over G/H such that
∫
G
χ(gh)µ(h) = 1

- χf ∈ C0(G,A⊗? B)

- f(g) =
∫
G

(αh ⊗ idB)(χ(gh)f(gh))µ(h)

- find approximation χf =
∑finite

i fi ⊗ bi + r with r as small as we want

- can assume: χ̃fi = fi, χ̃r = r for some function with proper support over G/H

- f(g) =
∑finite

i

∫
H
αhfi(gh)⊗ biµ(h) +

∫
H
αhr(gh)µ(h)
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-
∫
H
αhr(gh)µ(h) =

∫
H
αhr(gh)χ̃(gh)µ(h)

- this is small if r is small

for injectivity:

IndGH(A)⊗? B → IndGH(A⊗? B)
χ−→ C0(G,A⊗? B) is injective

since it is also IndGH(A)⊗? B
χ⊗idB−−−−→ C0(G,A)⊗? B → C0(G,A⊗? B)

Corollary 3.7. The functor IndLG descends to the homotopy localization.

f 7→ CoindLG(f) in general not continuous

- only if G/L is compact

- the following exercise shows where the problem is

Problem 3.8. Show that the functor A 7→ Cb(A) on C∗Algnu is not continuous.

Lemma 3.9. We have B ⊗!! (Ao! G) ∼= (B ⊗!! A) o! G .

Proof. have map B ⊗!! (Ao! G)→ (B ⊗!! A) o! G

- [Wil07, Thm. 2.75] for maximal products

- [Ech10, Lem. 4.1] for minimal/reduced

Corollary 3.10. The functors −oG and −or G descend to the homotopy localization.

Lemma 3.11. If G is closed in L and L/G is compact, then we have an adjunction

ResLG : LC∗Algnu � GC∗Algnu : CoindLG .

Proof. adjunctions descend if the functors do
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3.2 G-stability

3.2.1 The localization

general principle

C - ∞-category

- F : C→ C endofunctor

- WF - morphisms that are sent to equivalences by F

– called F -equivalences

- want to understand ` : C→ C[W−1
F ]

assume: zig-zag η : id ; F

- assume: ;∈ WF

– more precisely: have sequence of natural transformations

id→ F1 ← F2 → · · · ← Fn = F

– all components of all these transformations are in WF

let FC - full subcategory of C on image of F

- we say that η preserves FC if Fi(FC) ⊆ FC and the components of Fi → Fi±1 are
equivalences for all objects in FC

notation:

i : FC→ C inclusion

L : C→ FC - corestriction of F

Lemma 3.12. If η preserves FC, then the functor L : C→ FC presents its target as the
Dwyer-Kan localization of C at WF .

Proof. must show:

27



L∗ : Fun(FC,D)
'→ FunWF (C,D)

- Φ : FC→ D

- L∗Φ := Φ ◦ F obviously inverts WF

– so functor takes values in target as indicated

claim: i∗ : FunWF (C,D)→ Fun(FC,D) is inverse

consider L∗ ◦ i∗ : FunWF (C,D)→ FunWF (C,D)

- this is Φ 7→ Φ ◦ F

- η : id ; F induces αΦ := Φ(η) : Φ ; Φ ◦ F

– since Φ inverts WF we know that Φ(η) is equivalence

– get equivalence α : id→ L∗ ◦ i∗ : FunWF (C,D)→ FunWF (C,D)

— components αΦ

consider i∗ ◦ L∗ : Fun(FC,D)→ Fun(FC,D)

- this is functor Ψ 7→ Ψ ◦ F|FC

- have transformation η|FC : idFC ; F|FC : FC→ FC

– this is equivalence

– get equivalence βΨ := Ψ(η|FC) : Ψ ' Ψ ◦ F|FC

– get equivalence β : id→ i∗ ◦ L∗ : Fun(FC,D)→ Fun(FC,D)

— with components βΨ

Lemma 3.13. If F is left-exact, then the localization ` : C→ C[W−1
F ] is left-exact

Proof. WF is closed under

- pull-backs

- 2-out-of-3
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Lemma 3.14. If C is symmetric monoidal with bi-left exact ⊗, and F = −⊗D for some
object D, then ` : C→ C[W−1

F ] is left-exact symmetric monoidal.

Proof.

f in WF

- C any object

– D ⊗ (C ⊗ f) ' C ⊗ (D ⊗ f)

– (D ⊗ f) is equivalence since f ∈ WF

– hence D ⊗ (C ⊗ f) is equivalence

– hence C ⊗ f ∈ WF

conclude: ` is symmetric monoidal

in C[W−1]

- show: E ⊗− is left-exact:

A

��

B // C

- use model FC

- all objects in FC

– extend to pull-back in C

P //

��

A

��

B // C

- since F = −⊗D is left-exact have P ∈ FC
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- square is pull-back in FC (since latter is full subcategory)

E ⊗ P //

��

E ⊗ A

��

E ⊗B // E ⊗ C

is also pull-back in FC

G -locally compact, second countable

L2(G) - has left-regular representation

- is separable if G is second countable

- define KG := K(L2(G)⊗ `2) with conjugation action

Definition 3.15. A morphism f : A → B in GC∗Algnu
h is called a KG-equivalence if

f ⊗KG : A⊗KG → B ⊗KG is an equivalence.

V - Hilbert space with unitary G-action

- K(V ) in GC∗Algnu - compact operators with G-action by conjugation

- V → V ′ unitary embedding - induces morphism K(V )→ K(V ′) in GC∗Algnu

Lemma 3.16. If V is non-zero and V ′ is separable, then K(V ) → K(V ′) is a KG-
equivalence.

Proof.

KG
∼= K(L2(G))⊗K(`2) - is K-stable

V → V ′ unitary embedding of separable Hilbert spaces (no G-action)

- will show: K(V )→ K(V ′) is KG-equivalence

– use K(V )⊗K → K(V ′)⊗K is isomorphic to left upper corner
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– K(V )⊗K ⊗K → K(V ′)⊗K ⊗K is homotopy equivalence

– use KG
∼= KG ⊗K ⊗K

(V, ρ) - separable Hilbert space with G-action

- V ⊗ L2(G) ∼= L2(G, V ) mit action (g · f)(h) = ρgf(g−1h)

- construct equivariant unitary: φ : V ⊗ L2(G) ∼= ResG1 (V )⊗ L2(G)

– φ : f 7→ (h 7→ ρh−1f(h))

– write action on target as g ◦ f for the moment: (g ◦ f)(h) = f(g−1h)

- check: (g ◦ φ(f))(h) = ρh−1gf(g−1h) = φ(g · f)(h)

- conclusion:
K(V )⊗KG

∼= ResG1 K(V )⊗KG

for unitary embedding V → V ′ of unitary representations on separable Hilbert spaces

- K(V )⊗KG → K(V ′)⊗KG is isomorphic to ResG1 K(V )⊗KG → ResG1 K(V ′)⊗KG

- is equivalence

F : GC∗Algnu → D - functor

Definition 3.17. The functor F is called G-stable if for every equivariant unitary embed-
ding V → V ′ of separable Hilbert spaces the induced map F (A⊗K(V ))→ F (A⊗K(V ′))
is a equivalence.

write FunGs(. . . , . . . ) for G -stable functors

define K̂G := K((C⊕ L2(G))⊗ `2)

- C→ C⊗ `2 → (C⊕ L2(G))⊗ `2 ← L2(G)⊗ `2 induce

- C→ K → K̂G ← KG

- F := −⊗KG
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- F̂ := −⊗ K̂G

- get zig-zag

η : id→ F̂ ← F

Lemma 3.18. F (η) is an equivalence

Proof. Lemma 3.16

Definition 3.19. We define the Dwyer-Kan localization

LKG : GC∗Algnu
h → LKGGC

∗Algnu

at the KG-equivalences.

set Lh,KG := LKG ◦ Lh : GC∗Algnu → LKGC
∗Algnu

h

Corollary 3.20. Assume that G is second countable.

1. MapLKGGC
∗Algnu

h
(A,B) ' `HomG(KG ⊗ A,KG ⊗B)

2. LKG is left exact.

3. LKG is symmetric monoidal and induced tensor product on LKGC
∗Algnu

h is bi-left-
exact

4. For every stable infty category D we have an equivalence

L∗h,KG : Fun(LKGGC
∗Algnu

h ,D)
'→ Funh,Gs(GC∗Algnu,D)

Proof.

1. Lemma 3.12

2. Lemma 3.13

3. Lemma 3.14

4.

any functor which inverts KG-equivalence is G-stable:
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- use A⊗K(V )→ A⊗K(V ′) is a KG-equivalence

- Lh,KG is G-stable

any homotopy invariant G-stable functor F inverts KG-equivalences

f : A→ B - KG-equivalence

A

f

��

// A⊗ K̂G

��

A⊗KG
oo

'
��

B // B ⊗ K̂G B ⊗KG
oo

- F inverts horizontal arrows

- hence F inverts left vertical arrow f

L∗h,KG : Funlex(GC∗Algnu
h ,D)

'→ Funh,Gs,Sch(GC∗Algnu,D)

L∗h,KG : Fun⊗(lax)(GC
∗Algnu

h ,D)
'→ Fun⊗,h,Gs(lax) (GC∗Algnu,D)

L∗h,KG : Fun⊗,lex
(lax) (GC∗Algnu

h ,D)
'→ Fun⊗,h,Gs,Sch(lax) (GC∗Algnu,D)

Proposition 3.21. LKGC
∗Algnu

h is semi-additive

Proof. same proof as for non-equivariant case

Lemma 3.22. LKGC
∗Algnu

h has and Lh,KG preserves all countable coproducts.

Proof. LK is Bousfield localization

- preserves all coproducts

for i countable:

- LK(
∐

i∈I Ai) ' LK(
⊕

i∈I Ai)

- KG ⊗
⊕

i∈I Ai
∼=
⊕

i∈I KG ⊗ Ai
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`HomG(KG ⊗
⊕
i∈I

Ai, KG ⊗B) ' `HomG(K ⊗
⊕
i∈I

KG ⊗ Ai, KG ⊗B)

' `HomG(K ⊗
⊔
i∈I

KG ⊗ Ai, K ⊗KG ⊗B)

=
∏
i∈I

`HomG(K ⊗KG ⊗ Ai, K ⊗KG ⊗B)

=
∏
i∈I

`HomG(KG ⊗ Ai, KG ⊗B)

if G is compact

- have C→ L2(G)⊗ `2

– 1 7→ const⊗ e0

– get ε : C→ KG

Proposition 3.23. (KG, ε) is tensor idempotent in GC∗Algnu
h

Proof. C⊥ - complement of C in L2(G)⊗ `2

(L2(G)⊗ `2)⊗ (L2(G)⊗ `2) ∼= L2(G)⊗ `2 ⊕ C⊥ ⊗ (L2(G)⊗ `2)
∼= L2(G)⊗ `2 ⊕ L2(G)⊗ `2

L2(G)⊗ `2 //

v

��

L2(G))⊗ `2 ⊕ L2(G))⊗ `2

w

��

L2(G)⊗ L2((−∞, 0]) // L2(G)⊗ L2((−∞, 1])

find family of isometries Ut : L2((−∞, 0])→ L2((−∞, 1]) interpolating from the inclusion
to unitary

φt := w∗Utv(−)v∗U∗t w : KG → KG ⊗KG

φ0 = εG
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φ1 is isomorphism

Corollary 3.24. If G is compact, then LKG : GC∗Algnu
h → LKGGC

∗Algnu
h is a left

Bousfield localization.

Corollary 3.25. LKGGC
∗Algnu

h has all coproducts and Lh,KG preserves coproducts.

3.2.2 Descend of functors

all groups second countable

restriction:

- H → G

- ResGH : GC∗Algnu
h → HC∗Algnu

h

Lemma 3.26. ResGH descends to ResGH : LKGGC
∗Algnu

h → LKHHC
∗Algnu

h .

Proof. - want to show: LKH ◦ ResGH sends KG-equivalences to equivalences

- equivalently: this functor is G-stable

- V → V ′ - embedding of G-Hilbert spaces

- i : K(V )→ K(V ′)

- A⊗ i : A⊗K(V )→ A⊗K(V ′) induced map

- ResGH(A⊗ i) ' ResGH(A)⊗ ResGH(i)

- ResGH(i) is K(ResGH(V ))→ K(ResGH(V ′))

– is induced by ResGH(V )→ ResGH(V ′) - isometric inclusion of H-Hilbert spaces

- hence LKH ◦ ResGH(A⊗ i) is an equivalence

induction

- G a closed subgroup of L

35



- generalize Lemma 3.6

Lemma 3.27. For A in GC∗Algnu and B in LC∗Algnu and ? ∈ {min,max} we have an
isomorphism

IndLG(A)⊗? B ∼= IndLG(A⊗? ResLG(B)) .

Proof. same as Lemma 3.6

- have canonical map IndLG(A)⊗B → IndLG(A⊗ ResLG(B))

– must show injectivity and surjectivity

- use f 7→ (L 3 l 7→ (idA ⊗ βl)f(l) ∈ A⊗B) in order to identify

- Cb(G,A⊗ ResLG(B))G ∼= Cb(G,A⊗ ResL1 (B))G

- this preserves supports

– restricts to: IndLG(A⊗ ResLG(B)) ∼= Ind(A⊗ ResL1 (B))

- then apply Lemma 3.6

Lemma 3.28. Assume that L is second countable. The functor IndLG : GC∗Algnu
h →

LC∗Algnu
h descends to a functor IndLG : LKGGC

∗Algnu
h → LKLLC

∗Algnu
h .

Proof. want to show: LKL ◦ IndLG sends KG-equivalences to equivalences

abbreviate F := LKL ◦ IndLG : GC∗Algnu
h → LKLLC

∗Algnu
h

- F̂ := F (−⊗ ResLG(K̂L))

– F̂ ' (−⊗ K̂L) ◦ F

- F̃ := F (−⊗ ResLG(KL))

– F̃ ' (−⊗KL) ◦ F

- have zig-zag F → F̂ ← F̃

– by Lemma 3.27 is equivalent to F → (−⊗ K̂L) ◦ F ← (−⊗KL) ◦ F

– these maps are equivalences
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now use ResLG(KL) ∼= KG - see below

- F̃ obviously sends KG-equivalences to equivalences

- ResLG(L2(L)) ∼= L2(G)⊗ `2

– L→ L/G has measurable section s

— here we need that L and L/G are polish spaces

—- this is true since separable locally compact Hausdorff spaces are polish

— then apply the measurable section theorem to the image of the map L → L/G × L,
l 7→ (eG, l) and the projection L/G× L→ L/G

— this image is universally measurable

measurable G- isomorphism

- G× L/G→ L, (g, lG) 7→ gs(lG)

– induced measure µ⊗ ν for Haar measure µ on G and some measure on L/G

– L2(L) ∼= L2(G)⊗ L2(G/L, ν) ∼= L2(G)⊗ `2

crossed products

? ∈ {−, r}

Lemma 3.29. If A is in GC∗Algnu and (V, ρ) is a G-Hilbert space, then we have an
isomorphism

Ao? G⊗ ResG1 (K(V )) ∼= (A⊗K(V )) o? G .

Proof. since K(V ) is nuclear do not have to specify ⊗

for ? = −

- use ⊗max

Cc(G,A⊗K(V ))
∼=→ Cc(G,A⊗ ResG1 (K(V )))
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- f 7→ (g 7→ f(g)(id⊗ ρg))

– isomorphism of ∗-algebras

– inverse: f 7→ (g 7→ f(g)(id⊗ ρg−1))

– use then [Wil07, Lem. 2.75] or Lemma 3.9

for ∗ = r

- use ⊗min

– use same isomorphism of ∗-algebras as above

– apply Lemma 3.9

– φ : A→ B(H) injective to define ψ : Aor G→ B(L2(G,H))

– use ψ : Cr(G,A)→ B(L2(H)) and K(V )→ B(V ) to define minimal tensor product

– φ⊗ id : A⊗ ResG1 (K(V ))→ B(H ⊗ V )

- use this to define (A⊗ ResG1 (K(V ))) or G via rep on L2(G,H ⊗ V )

- use L2(G,H ⊗ V ) ∼= L2(G,H)⊗ V

- conclude isomorphism above is isometric

Example 3.30. Assume: σ : G→ U(M(B)) representation

- βg := σg − σg–1

- makes B ∈ GC∗Algnu

Lemma 3.31. For A in C∗Algnu and (?, !) ∈ {(−,max), (r,min)} we have an isomorphism
(B ⊗! A) o? G ∼= ResG(B)⊗! (Ao? G)

Proof. Cc(G,A)⊗B → Cc(G,A⊗B)

- f ⊗ b 7→ (g 7→ (idA ⊗ σg−1)(f ⊗ b))
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- induces isomorphism

Lemma 3.32. The functor − o? G : GC∗Algnu
h → C∗Algnu

h descends to a functor
−o? G : LKGGC

∗Algnu
h → LKC

∗Algnu
h .

Proof. abbreviate F := LK ◦ (−o? G) : GC∗Algnu
h → LKC

∗Algnu
h

- consider isometric embedding of separable G-Hiilbert spaces V → V ′

- must show F (A⊗K(V ))→ F (A⊗K(V ′)) is an equivalence

use Lemma 3.29

- F (A⊗K(V ))→ F (A)⊗ ResG1 (K(V )) is equivalent to

– F (A)⊗ ResG1 (K(V ))→ F (A)⊗ ResG1 (K(V ′))

– this is equivalence by stability

Lemma 3.33. If H is closed in G and G/H is compact, then we have an adjunction

ResGH : LKGGC
∗Algnu � LKHHC

∗Algnu : CoindGH .

Proof. adjunctions descend if functors do

Lemma 3.34. If H is open in G, then we have an adjunction

IndGH : LKHHC
∗Algnu

h � LKGGC
∗Algnu

h : ResGH .

Proof.

start with description of unit and counit

ε : id→ ResGH ◦ IndGH

- εA : A→ ResGH ◦ IndGH(A)

- εA(a) = χH(g)αg−1a =

{
αg−1a g ∈ H

0 else

- η : IndGH ◦ ResGH → id
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- ηB : IndGH(ResGH(B))→ B

– IndGH(ResGH(B)) ⊆ Cb(G,B)H

— invariance condition f(gh) = βh−1f(g)

— G-action by (g′ · f)(g) = f(g′,−1g)

— Cb(G,B)H
∼=→ Cb(G/H,B)

— f 7→ (gH 7→ βgf(g)

— restricts to IndGH(ResGH(B)) ∼= C0(G/H,B) ∼= C0(G/H)⊗B

— G-action diagonally

— C0(G/H)⊗B → K(L2(G/H))⊗B

— functions act by multiplication operator

— multiplication operators by C0-functions are compact by discreteness of G/H

— ηB : IndGH(ResGH(B)) ∼= C0(G/H)⊗B → K(L2(G/H))⊗B ' B

check triangle equalities

ResGH(B)
ε
ResG

H
(B)

→ ResGH(IndGH(ResGH(B)))
Res(ηB)→ ResGH(B)

b 7→ (g 7→ χH(g)βg−1b)

7→ (g 7→ χH(g)βgβg−1b)

= (g 7→ χH(g)b)

7→ χH ⊗ b ∈ ResGH(K(L2(G/H))⊗B)
'← b ∈ ResGH(B)

- the last map is left upper corner inclusion

- it follows that ResGH(ηB) ◦ εResGH(B) ' idResGH(B)

IndGH(A)
IndGH(εA)
→ IndGH(ResGH(IndGH(A)))

η
IndG
H

(A)

→ IndGH(A)
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((g 7→ f(g)) ∈ IndGH(A)) 7→ (g 7→ (l 7→ χH(l)αl−1f(g))) ∈ IndGH(ResGH(IndGH(A)))

7→ (g 7→ (l 7→ χH(g−1l)α(g−1l)−1f(g))) ∈ C0(G/H)⊗ IndGH(A)

= (g 7→ (l 7→ χH(g−1l)f(l))) ∈ C0(G/H)⊗ IndGH(A)

=
∑

k∈G/H

χkH ⊗ χkHf ∈ K(L2(G/H))⊗ IndGH(A)

must still compose with

K(L2(G/H))⊗ IndGH(A)
'→ K(C⊕ L2(G/H))⊗ IndGH(A)

'← IndGH(A)

- denote embedding i : K(L2(G/H))→ K(C⊕ L2(G/H))

– p in K(C⊕ L2(G/H) projection onto summand C

– i(χkH) ∈ K(C⊕ L2(G/H)) - one-dimensional projection

– choose u ∈ K(C⊕ L2(G/H)) one-dimensional partial isometry such that upu∗ = i(χH)

– define uk := ku for all k in G/H

– ukpu
∗
k = i(χkH)

– family of g-equivariant homomorphisms A 7→ K(L2(G/H))⊗ IndGH(A)

f 7→
∑

k∈G/H

(cos(
π

2
t)2i(χkH) + sin(

π

2
t)2p+ cos(

π

2
t)) sin(

π

2
t)(uk + u∗k))⊗ χkHf

– t = 0: get
∑

k∈G/H χkH ⊗ χkHf

– t = 1: get f 7→ p⊗ f

conclude:
ηIndGH(A) ◦ IndGH(εA) ' idIndGH(A)

note: this argument needs homotopy and stabilization
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3.2.3 Murray von Neumann equivalence and weakly equivariant maps, Thomsen
stability

f : A→ B - a morphism in C∗Algnu

- consider v in M(B)

– assume: u is partial isometry

– f(−)vv∗ = f(−)

– then get new homomorphism v∗f(−)v : A→ B

– call this the conjugated homomorphism

f, g : A→ B

Definition 3.35. We say that f and g are Murray-von Neumann (MvN) equivalent if there
exists a partial isometry v in M(B) such that fvv∗ = f and v∗f(−)v = g(−) : A→ B.

Lemma 3.36. If f and g are MvN-equivalent, then we have an equivalence

Lh,K(f) ' Lh,K(g) .

Proof.

B
b7→(b,0)−−−−→ Mat2(B) is equivalence in LKC

∗Algnu
h

- consider compositions:

– f ⊕ 0 : A
f−→ B

b 7→(b,0)−−−−→ Mat2(B)

– g ⊕ 0 : A
g−→ B

b 7→(b,0)−−−−→ Mat2(B)

– suffices to show f ⊕ 0 ' g ⊕ 0

consider u :=

(
v 1− vv∗

v∗v − 1 v∗

)
in Mat2(M(B))

- is unitary

- u∗(f ⊕ 0)u = (g ⊕ 0)
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- i is homotopic to 1Mat2(M(B))

– here is a homotopy

—

(
cos(π

2
t)v 1− (1− sin(π

2
t))vv∗

(1− sin(π
2
t))v∗v − 1 cos(π

2
t)v∗

)
is homotopy from u to

(
0 1
−1 0

)
— this can further be connected with 1Mat2(M(B))

(A,α), (B, β) in GC∗Algnu

- usually write A,B

f : A→ B morphism in C∗Algnu

- g · f := βg ◦ f ◦ αg−1

- conjugation action on HomC∗Algnu(A,B)

f : A→ B morphism in GC∗Algnu

- means f is equivariant g · f = f

Definition 3.37. A cocycle on B is a continuous map G→ U(M(B)) (strict topology on
the target) such that βh(σg)σh = σhg for all h, g in G.

(hg) · f = σhgfσ
∗
hg

h · (g · f)) = h · (σgfσ∗g)
= βh(σg)σhfσ

∗
hβh(σ

∗
g)

if β = id, then σ is an action of Gop

Definition 3.38. A cocycle σ on B extends f to a weakly equivariant map if g · f(−) =
σgf(−)σ∗g for all g in G.

(A,α), (B, β) in GC∗Algnu
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- f : A→ B equivariant

- v isometry in M(B)

– v∗v = 1M(B)

– p := vv∗

– βg(p) = p for all g in G

– fp = f

Lemma 3.39. v∗f(−)v extends to a weakly equivariant map with cocycle

g 7→ σg := βg(v
∗)v . (3.1)

Proof.

unitaryness

– σ∗gσg = v∗βg(v)βg(v
∗)v = v∗βg(p)v = v∗pv = 1M(B)

– cocycle

– βh(βg(v
∗)v)βh(v

∗)v = βhg(v
∗)pv = βhg(v

∗)v

(v∗f(−)v, σ) is weakly equivariant morphism

- βg(v
∗f(αg−1a)v) = βg(v

∗βg−1(f(a))v) = βg(v
∗)vv∗f(a)vv∗βg(v)) = σgv

∗f(a)vσg∗

Lemma 3.40. A weakly equivariant map (f, σ) : A→ B functorially induces an equivari-
ant homomorphism A⊗KG → B ⊗KG.

functorial means: as long as composition is defined

Proof.

suffices to construct morphisms A⊗K(L2(G))→ B ⊗K(L2(G))

- identify B ⊗K(L2(G)) with B-valued convolution kernels b(g, g′) on G
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- (bb′)(g, g′′) =
∫
G
b(g, g′)b′(g′, g′′)µ(g′)

- G-action: (hb(g, g′) = βhb(h
−1g, h−1g′)

similarly with A⊗K(L2(G))

define map A⊗K(L2(G))→ B ⊗K(L2(G)) by

- a(g, g′) 7→ σgf(a(g, g′))σ∗g′

– is homomorphism

– αh(a(h−1g, h−1g′)) goes to σgf(αh−1(a(h−1g, h−1g′)))σ∗g′

σgf(αh(a(h−1g, h−1g′)))σ∗g′ = σgβh(βh−1f(αh(a(h−1g, h−1g′))))σ∗g′

= σgβh(σh−1f(a(h−1g, h−1g′))σ∗h−1)σ∗g′

= βh(σh−1gf(a(h−1g, h−1g′))σ∗h−1g))

- conclude: A⊗K(L2(G))→ B ⊗K(L2(G)) is equivariant homomorphism

this is compatible with the partially defined composition

in order to see that we land in B ⊗K(L2(G))

- consider image of kernels a⊗ χK(g)χK′(g
′)

– K compact in G

- goes to (g, g′) 7→ σgaσ
∗
g′χK(g)χK′(g

′) ∈ B

- approximate σgaσ
∗
g′ on K uniformly by locally constant functions

- the resulting kernel is obviously in B ⊗K(L2(G))

(A,α), (A,α′) in GC∗Algnu

Definition 3.41. We say that A and A′ are exterior equivalent if idA extends to a weakly
equivariant map.

45



Corollary 3.42. If A ane A′ are exterior equivalent, then we have an equivalence
Lh,KG(A) ' Lh,KG(A′) in LKGC

∗Algnu
h

note: the equivalence in the corollary above might depend on the choice of the cocycle
extending idA

consider A = (A,α)

- consider G-action α̃ on A⊗K

Definition 3.43 (Thomsen). We say that α̃ is compatible with α if there exists an
equivariant map A→ A⊗K, a 7→ a⊗ e, for a minimal projection e.

Proposition 3.44. If α̃ is compatible with α, then α̃ is exterior equivalent to α⊗ idK by
a cocycle σ with σg(αg ⊗ id)σ∗g = α̃g and σg(a⊗ e)σ∗g = a⊗ e for all a in A.

Proof.

define σg :=
∑

i α̃g(1⊗ ei,1)(1⊗ e1,i)

σ∗gσg =
∑
j

(1⊗ ej,1)α̃g(1⊗ e1,j)
∑
i

α̃g(1⊗ ei,1)(1⊗ e1,i)

=
∑
j

(1⊗ ej,1)α̃g(1⊗ e1,1)(1⊗ e1,j)

=
∑
j

(1⊗ ej,1)(1⊗ e1,1)(1⊗ e1,j)

= 1

- σhg =
∑

i α̃hg(1⊗ ei,1)(1⊗ e1,i)

α̃h(σg)σh = α̃h(
∑
i

α̃g(1⊗ ei,1)(1⊗ e1,i))
∑
j

α̃h(1⊗ ej,1)(1⊗ e1,j)

=
∑
i

α̃hg(1⊗ ei,1)α̃(1⊗ e1,1))(1⊗ e1,i)

=
∑
i

α̃hg(1⊗ ei,1)α̃(1⊗ e1,i)
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σg(αg(a)⊗ ekl)σ∗g =
∑
i

α̃g(1⊗ ei,1)(1⊗ e1,i)(αg(a)⊗ ekl)
∑
j

(1⊗ ej,1)α̃g(1⊗ e1,j)

= α̃g(1⊗ ek,1)(1⊗ e1,k)(αg(a)⊗ ekl)(1⊗ el,1)α̃g(1⊗ e1,l)

= α̃g(1⊗ ek,1)(αg(a)⊗ e11)α̃g(1⊗ e1,l

= α̃g(1⊗ ek,1)α̃g(a⊗ e11)α̃g(1⊗ e1,l)

= α̃g(a⊗ ek,l)

Corollary 3.45. If α̃ is compatible with α, then the map (A,α) → (A ⊗ K, α̃) is a
KG-equivalence.

Proof.

A⊗KG

(a7→a⊗e)⊗idKG−−−−−−−−−→ (A⊗K ⊗KG, α̃⊗ `) ∼= (A⊗K ⊗KG, α⊗ idK ⊗ `)

- second isomorphism induced by exterior equivalence (A ⊗ K, α̃) → (A ⊗ K,α ⊗ idK)
obtained from Proposition 3.44

- this equivalence preserves a⊗ e

- whole composition is left upper corner inclusion tensored with KG

– hence a homotopy equivalence by stability of KG

conclude: first map is homotopy equivalence

F : C∗Algnu →M

- F homotopy invariant

Definition 3.46 (Thomsen [Tho98]). F is called Thomsen stable if it sends F (A,α)→
F (A⊗K, α̃) to equivalences provided α and α̃ are compatible

Lemma 3.47. G-stability is equivalent to Thomsen stability.

Proof.
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- by Corollary 3.45: a G-stable functor is stable in the sense of Thomsen

show: stable functor in the sense of Thomsen is KG-stable

– A→ A⊗ K̂G is Thomsen equivalence

– A⊗KG → A⊗ K̂G is Thomsen equivalence

K̂G
∼=
(

KG K(`2, L2(G)⊗ `2)
K(L2(G)⊗ `2, `2) K(`2, `2)

)
∼=
(
KG ⊗ e eKG ⊗Ke⊥
e⊥Ke e⊥KG ⊗Ke⊥

)
∼= KG⊗K

- e - one-dimensional in K

– some action preserving this structure

– use here some identification KG ⊗K with K (no action)

— write A⊗KG = (A′, α′)

— A⊗ K̂G = (A′ ⊗K, α̃′)

— get Thomsen equivalence

f : A→ B - KG -equivalence

- use diagram

A

f

��

// A⊗ K̂G

��

A⊗KG
oo

'
��

B // B ⊗ K̂G B ⊗KG
oo

- F sends horizontal arrows to equivalences since they are Thomsen equivalences

- F sends right vertical map to equivalence since it is homotopy equivalence

– hence: F sends left vertical map to equivalence
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consider (A,α) in GC∗Algnu

- p in M(A)G - invariant projection

- (B, pαp) in GC∗Algnu

- i : B → A invariant inclusion

Definition 3.48. B is called a corner of A.

Definition 3.49. It is called full if ApA = A.

Recall: A separable implies A has strictly positive element

Proposition 3.50. If A admits a strictly positive element, then there exists a weakly
equivariant isomorphism v : B ⊗K → A⊗K. Furthermore Lh,KG(v) ' Lh,KG(i).

Proof.

apply [Bro77, Cor. 2.6]

– (B ⊗K) = (p⊗ 1)A⊗K)(p⊗ 1)

- find isometry v in M(A⊗K) with v∗v = p⊗ 1

- v∗ − v : B ⊗K
∼=→ A⊗K

apply Lemma 3.39

- get canonical extension by cocycle to weakly equivariant map

i and v are Murray von Neumann equivalent

- i⊕ 0 and v ⊕ 0 are conjugate by unitary u

- u is homotopic to 1

- can extend whole homotopy from i⊕ 0 to v ⊕ 0 to homotopy of weakly equivariant maps
(use explicit formula for cocycle (3.1))

- get homotopy of equivariant maps Mat2(A)⊗KG → Mat2(B)⊗KG
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Corollary 3.51. If A is separable, then a full corner inclusion B → A induces an
equivalence Lh,KG(B)→ Lh,KG(A).

3.2.4 Hilbert C∗-modules and bimodules

B - C∗-algebra

- E - C- vector space

– consider the following additional structures:

— B-right module structure

— B-valued scalar product: 〈−,−〉 : E ⊗C E → B

—- 〈be, e′b′〉 = b∗〈e, e′〉b′ for all b, b′ in B, e, e′ in E

—- 〈e, e′〉 = 〈e′, e〉∗

—- 〈e, e〉 ≥ 0

– define seminorm: ‖e‖ := ‖〈e, e〉‖1/2

— check: semi-norm properties (exercise)

- so far: (E, 〈−,−〉) - a pre Hilbert B-module

Definition 3.52. (E, 〈−,−〉) is a Hilbert B-module if (B, ‖ − ‖) is a Banach space.

set I := 〈E,E〉

- is ideal in B

Lemma 3.53. EI ⊆ E is dense

Proof. 〈e− ei, e− ei〉 = 〈e, e〉 − 〈e, e〉i− i∗〈e, e〉+ i∗〈e, e〉i

- can make this as small as we want

- take i in approximate unit of I
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A : E → E a map

Definition 3.54. A is adjointable if there exists A∗ : E → E such that 〈Ae, e′〉 = 〈e, A∗e〉
for all e, e′ in E

Lemma 3.55. If A is adjointable, then A is linear, B-linear and bounded (in the sense
of Banach spaces) and A∗ is uniquely determined by A.

Proof. uniqueness: exercise

- linearity: exercise

- boundedness: use closed graph theorem

B(E) - adjointable operators on E

Lemma 3.56. B(E) is a C∗-algebra.

Proof. B(E) is closed in bounded operators on E

- ∗ is involutive, isometric

- ‖A∗A‖ = ‖A‖2

– Chauchy-Schwarz: ‖〈e, f〉‖2 ≤ ‖e‖2‖f‖2 (exercise)

– implies ‖〈Ae,Ae〉‖2 ≤ ‖A∗A‖2 ≤ ‖A‖4 for unit vectors e

– ‖A‖2 ≤ ‖A∗A‖ ≤ ‖A‖2 - hence equality

consider e, e′ in E

- define C-linear map Θe,e′ : E → E

– Θe,e′(e
′′) := e〈e′, e′′〉

– is B linear: Θe,e′(e
′′b) = e〈e′, e′′b〉 = e〈e′, e′′〉b = Θe,e′(e

′′)b

– is adjointable:
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〈Θe,e′(e
′′), e′′′〉 = 〈e〈e′, e′′〉, e′′′〉

= 〈e′, e′′〉∗〈e, e′′′〉
= 〈e′′, e′〉〈e, e′′′〉
= 〈e′′, e′〈e, e′′′〉〉
= 〈e′′,Θe′,e(e

′′′)〉

Θe,e′ is called elementary compact

Definition 3.57. We define K(E) as the C∗-subalgebra of B(E) generated by the elemen-
tary compact operators.

Lemma 3.58. K(E) is an ideal in B(E) and B(E) ∼= M(K(E)).

Proof. ideal: exercise

multiplier: see [Bla98, 13.4.1]

Example 3.59. Example: B = C

- Hilbert C-modules are Hilbert spaces, B(E) and K(E) have the usual meaning

-note: the elements of K(E) are in general not compact in the sense of bounded operators
on a Banach space

Example 3.60. B is Hilbert B-module

- 〈b, b′〉 := b∗b′

- B(B) = M(B) and K(B) = B

can form orthogonal sum of Hilbert B-modules

Bn :=
⊕n

i=1 B as Hilbert B-modules

K(Bn) ∼= Matn(B)

B(Bn) ∼= Matn(M(B))

Example 3.61. can for direct sum of Hilbert B-modules

E ⊕ F

- scalar product 〈e⊕ f, e′ ⊕ f ′〉 := 〈e, e′〉+ 〈f, f ′〉
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Example 3.62. have maps Bn → Bn+1

- form H◦B := colimn∈NB
n in right B-modules

- get scalar product

- HB := completion of H◦B

elements: (bi)i∈N with
∑

i∈N b
∗
i bi converges in B

- norm: ‖(bi)i∈N‖2 = ‖
∑

i∈N b
∗
i bi‖

note: ‖
∑

i∈N b
∗
i bi‖ ≤ ‖

∑
i∈N ‖bi‖2 but in general not equal

Example 3.63. X -locally compact space

(V, h) - euclidean vector bundle

Γ0(X, V ) is right C0(X)-module

- 〈v, v′〉(x) := h(v(x), v′(x)) is scalar product

- B(Γ0(X, V )) = Γb(X, End(V ))

- K(Γ0(X, V )) = Γ0(X, End(V ))

- idV is compact if and only if X is compact

Example 3.64. can talk about adjointable operators A : E → E ′

- equivalently:

(
0 0
A 0

)
: E ⊕ E ′ → E ⊕ E ′ is adjointable

here is an example of a non-adjointable bounded B-linear map

B := B(`2) is B-Hilbert C∗-module

- K := K(`2) is submodule

- A : K → B is isometric inclusion of right B-modules

Claim: A is not adjointable.
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everything has an equivariant version

G - action on E

- σ : G→ U(B(E)) homomorphism

- strongly continuous: g 7→ σg(e) continuous

Lemma 3.65. The action G→ Aut(K(E)) (by conjugation) is continuous.

Proof. Exercise!

Definition 3.66. A Hilbert-B-module is called full, if 〈E,E〉 is dense in B.

Example 3.67. E - equivariant Hilbert B-module

- I - ideal in B generated by 〈E,E〉

- is invariant

E is full equivariant I Hilbert B-module

Lemma 3.68. B(E) ∼= B(E|I)

Proof. (ui) approximate unit of I

- A in B(E|I)

- for all e, e′ in E, b in B

〈e, A(e′b)− A(e′)b〉 = lim
i
〈e, A(e′b)− A(e′)b〉ui

= lim
i
〈e, A(e′bui)− A(e′)bui〉

= 0

- shows: A(e′b) = A(e′)b

Example 3.69. can consider left Hilbert A-modules in analogy

- start with Hilbert B-module E

54



- is left K(E)-module

- define K(E)-valued scalar product (e, e′) := Θe,e′ :

- check (Θe′′′,e′′e, e
′) = Θe′′′〈e′′,e〉,e′ = Θe′′′,e′′Θe,e′ = Θe′′′,e′′(e, e

′)

– (e, e) = Θe,e is positive (exercise ?)

– show ‖θe,e − t‖ ≤ t

– ‖(e, e)‖ = ‖Θe,e‖ = ‖e‖2 (exercise ?)

conclude: E is left Hilbert K(E)-module

- compatible scalar products:

(e, e′)e′′ = Θe,e′(e
′′) = e〈e′, e′′〉

- full by construction

Construction 3.70. follow [BGR77]

A,B - G-C∗-algebras

- X - (right) B-Hilbert module and (left) A-Hilbert module

- compatible scalar products 〈x, x′〉Ax′′ = x〈x′, x′′〉B

- define X∗ - (B,A) - bimodule

– underlying vector space same as X with conjugated complex structure:

– operations: (x, a) 7→ a∗x, (b, x) 7→ xb∗

– conjugated scalar product

- define linking algebra C0 :=

(
A X
X∗ B

)
in GC∗Algnu

sep

– product:

(
a x
y b

)(
a′ x′

y′ b′

)
=

(
aa′ + 〈x, y′〉A ax′ + xb′

ya′ + by′ bb′ + 〈y, x′〉B

)
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((
a x
y b

)(
a′ x′

y′ b′

))(
a′′ x′′

y′′ b′′

)
=

(
aa′ + 〈x, y′〉A ax′ + xb′

ya′ + by′ bb′ + 〈y, x′〉B

)(
a′′ x′′

y′′ b′′

)
=

(
(aa′ + 〈x, y′〉A)a′′ + 〈ax′ + xb′, y′′〉A (ax′ + xb′)b′′ + (aa′ + 〈x, y′〉A)y′′

(ya′ + by′)a′′ + (bb′ + 〈y, x′〉B)y′′ (bb′ + 〈y, x′〉B)b′′ + 〈ya′ + by′, x′′〉B

)

(
a x
y b

)((
a′ x′

y′ b′

)(
a′′ x′′

y′′ b′′

))
=

(
a x
y b

)(
a′a′′ + 〈x′, y′′〉A x′b′′ + a′y′′

y′a′′ + b′y′′ b′b′′ + 〈y′, x′′〉B

)
=

(
a(a′a′′ + 〈x′, y′′〉A) + 〈x, y′a′′ + b′y′′〉A a(x′b′′ + a′y′′) + x(b′b′′ + 〈y′, x′′〉B)

. . . . . .

)

look at right upper corner: here need compatibility of scalar products for associativity

involution:

(
a x
y b

)∗
=

(
a∗ y
x b∗

)

- consider representation of C0 on X ⊕B by matrix multiplication

- induces seminorm

- define C as closure

clear: B ∼=
(

0 0
0 B

)
⊆ C as corner

full: C

(
0 0
0 1

)
C = C?

these are the elements of the form

(
〈x, y′′〉A xb′′

by′′ b

)
- need: A-valued scalar product is full

- XB ⊆ X is dense, Lemma 3.53
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assume: A,B - separable, X separable

- then C separable

- A ∼=
(
A 0
0 0

)
→ C is homomorphism (not necessarily injective)

Proposition 3.71. If X is a (A,B)-Hilbert bimodule such that

1. X is full as left A-Hilbert module

2. A,B,X are separable.

Then we get a morphism Lh,KG(A)→ Lh,KG(C)
'← Lh,KG(B)

Definition 3.72. An equivariant separable (A,B)-Hilbert bimodule is called an equivariant
Morita bimodule if it is full as right B-module and as left A-module.

Corollary 3.73. An (A,B)- Morita bimodule induces an equivalence in Lh,KG(A) '
Lh,KG(B).

E - a separable right B-Hilbert module

- then it is also (K(E), B)-Hilbert bimodule

- is full as K(E)-module

- is full as a I-rightmodule for I := 〈E,E〉

- by Proposition 3.50

Proposition 3.74. If E is a separable (A,B)-Hilbert bimodule such that: A → K(E),
then we get a morphism

E∗ : Lh,KG(A)→ Lh,KG(K(E))→ Lh,KG(X)
'← Lh,KG(I)→ Lh,KG(B) .

Construction 3.75.

E - (A,B) - Hilbert bi-module

F - (B,C)-Hilbert bimodule

define E ⊗B F
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- E ⊗alg
B F as vector space

- left action by a: a(e⊗ f) := ae⊗ f

- right action by C: (e⊗ f)c := e⊗ fc

- C-valued scalar product 〈e⊗ f, e′ ⊗ f ′〉 := 〈f, 〈e, e′〉f ′〉

- form completion E ⊗B F with respect to induced semi-norm

- show: operations extend by continuity

Lemma 3.76. K(E)
k 7→k⊗id−−−−−→ K(E ⊗B F )

Proof. exercise*

E - (A,B) - Hilbert bi-module

F - (B,C)-Hilbert bimodule

Lemma 3.77. We have L(F ) ◦ L(E) ' L(F ⊗B E) : Lh,KG(A)→ Lh,KG(B).

Proof. need a good argument!

Example 3.78. in this example translate two-morphisms into homotopies

φ : A→ A′, ψ : B → B′ - algebra homomorphisms

E : A→ A′, E ′ : B → B′ - bi-modules

- can form new bimodules:

– A
φ−→ A′

E′−→ B′ - gives E ′ ◦ φ : A→ B′

– A
E−→ B

ψ−→ B′ ( by E ⊗B B′ ) - gives ψ ◦ E : A→ B′

Lh,KG(A)

ψ◦E

''

E′◦φ

77
↓ Γ Lh,KG(B′)

- Γ : E → E ′ structure preserving iso in obvious sense
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- induces homotopy E ⊗B B′ → E ′ ◦ φ

– form mapping cone C([0, 1], E ′) ◦ φ⊕0,Γ ψ ◦ E

– is (A,C([0, 1], B′))-bimodule

– evaluation at 0 is ψ ◦ E

– evaluation at 1 is E ′ ◦ φ

Example 3.79. (A,α), (A, idA) in GC∗Algnu

- σ : G→ U(M(A)) homomorphism

- assume: (idA, σ) : (A,α)→ (A, idA) weakly equivariant map

- consider vector space A := A with:

– G-action: a 7→ σga

– A is right (A, 1)-Hilbert C∗-module

— action aa′ is product in A

— scalar product 〈a, a〉 := a∗a′

– (A,α)→ K(A) equivariant a 7→ (a′ 7→ aa′)

— equivariance σgaσg−1 = αg(a) by assumptions

— is isomorphism

A is (A,α), (A, id)-Morita bimodule

Lemma 3.80. L(A) ' L(idA, σ)

3.2.5 Imprimitivity and some adjunctions

H ⊂ G - closed subgroup
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Theorem 3.81 (Green’s imprimitivity theorem). For ? ∈ {r,−} there is an equivalence
of functors

−o? H → IndGH(−) o? G

from LKHHC
∗Algnu

sep,h → LKC
∗Algnu

sep,h.

Proof. A in HC∗Algnu

- define Morita (IndGH(A) or G,Aor H)-bimodule X(A)

- Xc(A) := Cc(G,A)

– left action: (bx)(s) =
∫
G
b(t, s)x(t−1s)∆G(t)1/2µG(t), b(t, s) ∈ Cc(G, IndGH(A))

– right action (xa)(s) =
∫
G
αh(x(sh)a(h−1))∆H(h)−1/2µH(h), a ∈ Cc(G,A)

– IndGH(A)o?G
〈x, y〉(s, t) := ∆G(s)−1/2

∫
H
αh(x(th)y(s−1th)∗)µH(h)

– 〈x, y, 〉Ao?H(h) = ∆H(h)−1/2
∫
G
x(t−1)∗αh(y(t−1h))µG(t)

form closure with respect to induced norm

- continuous extension of actions and scalar products

- show Morita property

for history and references see discussion in [Ech10]

Theorem 3.82 (Green-Julg theorem). If G is compact, then we have an adjunction

ResG : LKC
∗Algnu

sep,h � LKGGC
∗Algnu

sep,h : −oG .

Proof.

unit: εA : A→ ResG(A) or G

- a 7→ consta in C(G,A) ⊆ C∗(G,A)

– use that Haar measure is normalized to see that this is homomorphism

description of the unit as bimodule

- more general:
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– B in GC∗Algnu

– E a equivariant (right) Hilbert B-module

– action map γ

– form Ê - a B oG-Hilbert module

— right action: eb :=
∫
G
γs(ef(s−1))µ(s)

— B oG-valued scalar product: 〈e, e′〉(s) = 〈e, γs(e′)〉

apply to A with trivial action

- A becomes right AoG-module Â

– Â induces morphism εA : Lh,K(A)→ ResG(Lh,KA) or G

argument that this is the case

- 〈Â, Â〉 =: I - constant functions in AoG

– is ideal in AoG

– linking algebra C for (A, I) is Mat2(A)

– A→ C left upper corner

– I → C right lower corner

– induces A→ I (identity on A)

– Â thus induces A→ AoG given by inclusion of I

– this is precisely the unit

counit:

- L2(G,B) becomes equivariant (B oG,B)-bimodule

– B-valued scalar product: 〈h, h′〉 :=
∫
G
βs(h(s−1)∗h′(s))µ(s)

– right B-action: (hb)(t) = h(t)βt(b)
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– left B oG-action: (fh)(t) =
∫
G
f(s)βs(h(s−1t))µ(s)

— check: goes to K(L2(G,B))

– G-action σs(h)(t) = f(ts)

- ResG(B oG)→ K(L2(G,B))

– left convolution commutes with right translation

L2(G,B) induces counit map ηB : ResG(B oG)→ B in LKGGC
∗Algnu

h

check triple identities

ResG(A)
ResG(εA)−−−−−→ ResG(ResG(A) or G)

ηResG(A)−−−−−→ ResG(A)

- a 7→ consta → consta (convolution) in K(L2(G,A)) ∼= A⊗K(L2(G))

– this is left upper corner inclusion with projection onto the G-invariants

B oG
εBoG−−−→ ResG(B oG) oG

ηBoG−−−→ B oG

- write this as tensor products of bimodules

ηResG(BoG) oG ◦ εBoG is given by

̂ResG(B oG)⊗ResG(BoG)oG (L2(G,B) oG) ∼= ...

this represents identity

Theorem 3.83. If G is discrete, then we have an adjunction

−omax : LKGGC
∗Algnu

sep,h � LKC
∗Algnu

sep,h : ResG

Proof. unit: εA : A→ ResG(Aomax G)

- a 7→ aδe

- weakly equivariant with cocycle: σg := δg
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- δg(aδe)δg−1 = δg(aδg−1) = αg(a)δe

– get map εA : Lh,KG(A)→ Lh,KG(ResG(Aomax G))

can be more explicit: is useful for calculations

- g 7→ δg is homomorphism G→ U(M(Aomax G))

– get (Aomax G, δ) in GC∗Algnu

— A→ (Aomax G, δ) is equivariant

— εA : Lh,KG(A)
a7→aδe−−−→ Lh,KG(Aomax G, δ)

L(E)−−−→ Lh,KG(ResG(Aomax G))

– E is (Aomax G, δ),ResG(Aomax G)) -bimodule as in Example 3.79

– get bimodule ResG(Aomax G)

counit: ηB : ResG(B) omax G→ B

- trivial G-action and left multiplication on B extends to B omax G-action on B

- get B̂ - a (ResG(B) omax G,B)-bimodule

- induces a map ResG(B) omax G→ B

– f 7→
∑

s∈G f(s)

check triple identities:

ResG(B)
εResG(B)−−−−−→ ResG(ResG(B) omax G)

ResG(ηB)−−−−−→ ResG(B)

- b 7→
∑

s∈G(bδe)(s) = b

- this is obviously the identity

Aomax G
εAomaxG−−−−−→ ResG(Aomax G) omax G

ηAomaxG−−−−−→ Aomax G

see e.g. [Par15, Sec. 3]
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Aomax G
εAomaxG//

φ

))

(Aomax G, δ) omax G

Ψ
��

EomaxG// ResG(Aomax G) omax G
ηAomaxG// Aomax G

ResG(Aomax G) omax G
E′omaxG// ResG(Aomax G) omax G

ηAomaxG

55

Ψ is given by Lemma 3.31

- E
′

is like E but for trivial action

- the same map as in Lemma 3.31 also induces a two-morphism from E omax G to
E ′ omax G ◦Ψ making the diagram commute

– use Example 3.78 to produce homotopy

- φ(f)(g, h) = (δh · (f(h)δe))(g)δe = f(h)δh(g)

- ηAomaxG(φ(f)(g, h)) =
∑

h∈G φ(f)(g, h) = f(g)

3.3 Forcing exactness and Bott

3.3.1 The localization L!

! ∈ {ex, se, splt}

want a left exact localization

L! : LKGGC
∗Algnu

h → LKGGC
∗Algnu

h,!

- such that

Lh,KG,! : GC∗Algnu Lk−→ GC∗Algnu
h

LKG−−→ LKGGC
∗Algnu

h

L!−→ LKGGC
∗Algnu

h,!

sends !-exact sequences of C∗-algebras to fibre sequences

- in case ! = se, splt: require the corresponding splits equivariant

consider !-split exact sequence of G-C∗-algebras
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0→ A→ B
f−→ C → 0

form diagram:

0

��

0 // A //

ιf
��

B
f
//

hf
��

C //

s

��

0

0 // C(f) //

πf

��

Z(f)
f̃
//// C //

s̃

WW
0

Q(f)

ŝ

88

��

0

(3.2)

Ŵ! - set of morphisms Lh,KG(ιf ) for all !-exact sequences as above with C contractible

- W! - closure of Ŵ! under 2-out-of 3 and pull-backs

Definition 3.84.
L! : LKGGC

∗Algnu
h → LKGGC

∗Algnu
h,!

is the Dwyer Kan localization at W!.

Proposition 3.85.

1. L! is left exact.

2. L! symmetric monoidal.

3. ⊗ on LKGGC
∗Algnu

h,! is bi-left exact.

4. LKGGC
∗Algnu

h,! is semi-additive and L! preserves finite coproducts.

Proof. same as non-equivariant case

universal properties:

- for any left exact ∞-category D:
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L∗h,KG,! : Funlex(GC∗Algnu
h,!,D)

'→ Funh,Gs,Sch+!(GC∗Algnu,D)

- for any symmetric monoidal left exact ∞-category D:

L∗h,KG,! : Fun⊗,lex
(lax) (GC∗Algnu

h,!,D)
'→ Fun⊗,h,Gs,Sch+!

(lax) (GC∗Algnu,D)

there is a separable version of all that

Remark 3.86 (Descend of functors).

the functors ResLG, IndGH and −o? G preserve suitable exact sequences but:

- it is not clear that they preserve Schochet fibrations

- therefore not clear that the descends to LKGGC
∗Algnu

h are left-exact

- they perserve Ŵ!

- but not clear that they preserve W!

– so do not expect that these functors descend to LKGGC
∗Algnu

h,!

- fortunatlely this is intermediate step

3.3.2 Bott periodicity and KKG
sep and EG

sep

have Toeplitz extension

0→ K → T → C(S1)→ 0

- no G-action

- reduced Toeplitz extension

0→ K → T0 → S(C)→ 0

Lemma 3.87. If F : GC∗Algnu →M is homotopy invariant, G-stable, split-exact and
takes values in groups, then F (T0) ' 0.
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Proof. same as in non-equivariant case

! in {ex, se}

- reduced Toeplitz extension is semisplit

- get βC,! : Ω2(Lh,KG,!(C)) ' Ω(Lh,KG,!(S(C)))→ Lh,KG,!(K)) ' Lh,KG,!(C)

- βA,! := βC,! ⊗ A

for A in GC∗Algnu:

Corollary 3.88. If E : LKGGC
∗Algnu

h,! →M is left exact and takes values in groups, then
the boundary map E(βA,!) : E(Ω2

!A)→ E(A) is an equivalence.

Proof. - consider F := E(−⊗ A)

- F (βC,!) = E(βA,!)

- F of reduced Toeplitz sequence is E of 0→ K ⊗ A→ T0 ⊗ A→ S(A)→ 0

- is fibre sequence

- F annihilates middle term

Corollary 3.89. If A is a group in LKGGC
∗Algnu

h,!, then βA,! : Ω2
! (A)→ A in LKGGC

∗Algnu
h,!

is an equivalence.

Corollary 3.90. We have a Bousfield localization

incl : (LKGGC
∗Algnu

h,!)
group � LKGGC

∗Algnu
h,! : Ω2

!

with counit β : Ω2
! → id.

have separable version

Definition 3.91. We define the ∞-category

KKG
sep,! := (LKGGC

∗Algnu
h,!)

group

and

kksep,! : GC∗Algnu
sep

Lsep,h−−−→ GC∗Algnu
sep,h

LKG−−→ Lsep,KGGC
∗Algnu

sep,h

Lsep,!−−−→ GC∗Algnu
sep,h,!

Ω2
sep,!−−−→ KKG

sep,!
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Lemma 3.92. If F : GC∗Algnu →M is a homotopy invariant and semi-exact functor,
then it is Schochet exact.

Proof.

note: Schochet exact means: F sends Schochet fibrant pull-back squares

A //

��

B

Schochet
��

C // D

to pull-back squares

- by stability of M: it suffices to consider case with C = 0, i.e. Schochet exact sequences

assume: 0→ A→ B → C → 0 is Schochet exact

- have diagram
F (A)

F (ιf )

��

// F (B)

F (hf )

��

// F (C)

F (C(f)) //

��

F (Z(f)) // F (C)

F (Q(f))

.

- lower sequence is fibre sequence since mapping cone sequence is semi-exact and F is
semiexact

Lh sends both sequences to fibre sequences by Schochet exactness

- Lh(hf ) is equivalence

- Lh(ιf ) is equivalence

- hence F (ιf ) is equivalence by homotopy invariance of F

the horizontal sequence in the diagram above are equivalent

- upper sequence is fibre sequence
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consider

- ⊗? in connection with localization ! ∈ {se, ex}

- allowed combinations:
! \ ? min max

se yes yes
ex no yes

Theorem 3.93.

1. KKG
sep,! is a stable ∞-category.

2. kkGsep,! is symmetric monoidal and ⊗? is bi-exact.

3. Funex(KKG
sep,!,D)

kkG,∗sep,!' Funh,Gs,!(GC∗Algnu,D) for any stable ∞-category D.

4. Fun⊗,ex(lax)(KKG
sep,!,D)

kkG,∗sep,!' Fun⊗,h,Gs,!(lax) (GC∗Algnu,D) for any symmetric monoidal
stable ∞-category D.

standard notation
KKG

sep := KKG
sep,se , kkGsep := kkGsep,se

EG
sep := KKG

sep,ex , eGsep := kkGsep,ex

3.3.3 Descend of functors

LG := Ω2
sep,! ◦ Lsep,! : GC∗Algnu

sep,h → KKG
sep,!

by construction: for any stable ∞-category D

L∗ : Funex(KKG
sep,!,D)

'−→ Funlex,!(LKGC
∗Algnu

sep,h,D) ' Fun!(LKGC
∗Algnu

sep,h,D

use Lemma 3.92

- Fun!- which send (images of) !-exact sequences to fibre sequences

G→ L - homomorphism
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LKLLC
∗Algnu

sep,h

ResLG //

kkLsep,!
��

LKGGC
∗Algnu

sep,h

kkGsep,!
��

KKL
sep,!

ResLG // KKG
sep,!

- ResLG : LKLLC
∗Algnu

sep,h → LKGGC
∗Algnu

sep,h preserves !-exact sequences

- LG ◦ ResLG ∈ Fun!(LKLLC
∗Algnu

sep,h,D) sends !-exact sequences to fibre sequences

Corollary 3.94. We have a left-exact descended functor

ResLG : KKL
sep,! → KKG

sep,!

H ⊆ G closed subgroup

LKHHC
∗Algnu

sep,h

IndGH //

kkGsep,!
��

LKGGC
∗Algnu

sep,h

kkGsep,!
��

KKH
sep,!

IndGH // KKG
sep,!

Lemma 3.95. IndGH preserves !-exact sequences.

Proof. construct for any A natural retract:

IndGH(A)
α−→ C0(supp(χ))⊗ A β−→ IndGH(A)

- consider function χ ∈ C(G)

–
∫
H
χ(gh)µ(h) = 1

– require that for every g in G there exists a open U of G and compact K in H such that
χ(g′h) = 0 for g′ ∈ U , h 6∈ K

- define maps:

– α : f 7→ (g 7→ χ(g)f(g))

– β : f 7→ (g 7→
∫
H
αhf(gh)µ(h))
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— check H-equivariance: gh′ 7→
∫
H
αhf(gh′h)µ(h) = αh′,−1

∫
H
αhf(gh)µ(h)

— check retract: β(α(f)) = f

—-
∫
H
α(h)χ(gh)f(gh)µ(h) =

∫
H
χ(g)f(g)µ(h) = f(g)

C0(supp(χ))⊗− is preserves !-exact sequences

- a retract of a !-exact sequence is again one

? in {max, r}

Corollary 3.96. We have a left-exact descended functor IndGH : KKH
sep,! → KKG

sep,!.

o?G preserves contractibility and zero

- use (A⊗ C(X)) o? G ∼= (AoG)⊗ C(X)

- it preserves contractible algebras

– use IndGH(A⊗ C(X)) ∼= IndGH(A)⊗ C(X)

– IndGH(0) ∼= 0

consider

LKGGC
∗Algnu

h

o?G //

kkGsep,!
��

LKC
∗Algnu

sep,h

kksep,!

��

KKH
sep,!

−o? // KKG
sep,!

- o? in connection with localization ! ∈ {se, ex}

- allowed combinations:
! \ ? r max

se yes yes
ex no yes

Lemma 3.97. −o? G preserves !-exact sequences.
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Proof. for ex and max:

0→ I → A→ Q→ 0

0→ I omax G→ Aomax G→ Qomax G→ 0

Cc(G,−) preserves exact sequences and takes values in pre- C∗-algebras

- compl is left-adjoint and preserves push-outs

remains to show: I omax G→ Aomax G is injective

- every rep of I oalg G extends to rep of Aoalg G

for se:

split induces split of 0→ Cc(G, I)→ Cc(G,A)→ Cc(G,Q)→ 0

- split extends to split under completion

– needs more analytic arguments

Corollary 3.98. We have a left-exact descended functor −oG : KKG
sep,! → KKsep,!.

Corollary 3.99.

1. Green’s imprimitivity theorem: For H ⊆ G closed:

−o? H
'−→ IndGH(−) o? G : KKH

sep,! → KKG
sep,! .

2. For H ⊆ G open and closed: We have adjunction

IndGH : KKH
sep,! � KKG

sep,! : ResGH .

3. Green-Julg Theorem: If G is compact, then we have an adjunction

ResG : KKsep,! � KKG
sep,! : −oG .

4. Dual Green-Julg: If G is discrete, then we have an adjunction

−omax G : KKG
sep,! � KKsep,! : ResG .
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3.3.4 Extension to from separable to all C∗-algebras

Definition 3.100. We define:

KKG
! := Ind(KKG

sep,!)

have canonical functor y : KKG
sep,! → KKG

!

Definition 3.101. We define:

kk! : GC∗Algnu → KKG
!

as the left Kan-extension

C∗Algnu
sep

incl

&&

kkGsep,!
// KKG

sep,!

y
// KKG

!

GC∗Algnu

kkG!
99

Proposition 3.102.

1. KKG
! and kk! have symmetric monoidal refinements for ⊗?.

2.

Funcolim(KKG
! ,D)

kkG,∗!' Funh,Gs,!,sfin(GC∗Algnu,D) (3.3)

for any cocomplete stable ∞-category

3.

Fun⊗,colim(lax) (KKG
! ,D)

kkG,∗!' Fun⊗,h,Gs,!,sfin
(lax) (GC∗Algnu,D)

for any cocomplete stable symmetric monoidal ∞-category D.

standard notation
KKG := KKG

se , kkG := kkGse

EG
sep := KKG

ex , eG := kkGex

want to extend functors

C - a functor from GC∗Algnu to HC∗Algnu

- for A→ B define C(A)C(B) as image of C(A)→ C(B)

- assume: C preserves separable algebras

– then C(A)C(B) is separable provided A is separable

73



Definition 3.103. We say that C is Ind-s-finitary if it has the following properties:

1. For every A in GC∗Algnu the inductive system (C(A′)C(A))A′⊆sepA is cofinal in the
inductive system of all invariant separable subalgebras of C(A).

2. The canonical map (C(A′))A′⊆sepA → (C(A′)C(A))A′⊆sepA is an isomorphism in
Ind(HC∗Algnu).

Lemma 3.104. Assume that C preserves separable algebras and satisfies Item 1. If C
satisfies one of:

1. C preserves inclusions

2. C preserves countably filtered colimits

then C is Ind-s-finitary.

Proof. Argument in case 2.

consider an invariant separable subalgebra A′ of A

- gives the outer part of the following diagram

C(A′) //

$$

��

C(A′)C(A)

yy

��

C(A′′)

zz

C(A) C(A)

(3.4)

- poset of invariant separable subalgebras of A is countably filtered

C preserves countably filtered colimits

- colimA′⊆sepAC(A′) ∼= C(A)

– the left vertical arrow is the canonical inclusion into the colimit.

– let I be the kernel of C(A′)→ C(A′)C(A)

– I is separable

– I is the kernel of C(A′)→ C(A).
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– find an invariant separable subalgebraA′′ ofA such that I is annihilated by C(A′)→ C(A′′)

— use here countably filtered and annihilate a countable sets of generators of I

get dotted arrow.

- existence of A′′ for given A′ shows:

– the canonical map of inductive systems (C(A′))A′⊆sepA → (C(A′)C(A))A′⊆sepA has an inverse
in Ind(Fun(BH,C∗Algnu)).

[BELb, Lem. 4.3]

Lemma 3.105. If F is some s-finitary functor on HC∗Algnu and C is Ind-s-finitary,
then the composition F ◦ C is an s-finitary functor on GC∗Algnu.

Proof. A in HC∗Algnu

- must show: canonical morphism is an equivalence:

colim
A′⊆sepA

F (C(A′))→ F (C(A)) (3.5)

Condition 3.103.2 implies equivalence:

colim
A′⊆sepA

F (C(A′))
'→ colim

A′⊆sepA
F (C(A′)C(A))

Condition 3.103.1 implies equivalence:

colim
A′⊆sepA

F (C(A′)C(A))
'→ colim

B′⊆sepC(A)
F (B′)

F is s-finitary: get equivalence

colim
B′⊆sepC(A)

F (B′)
'→ F (C(A))

composition of these equivalences is the desired equivalence (3.5).

Proposition 3.106. Assume

1. F preserve separable algebras

2. F|sep descends to KKsep,!

3. F is Ind-s-finitary
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Then we have an essentially unique colimit- and compact object preserving factorization

KKH
sep,!

F|sep
//

y

��

KKG
sep,!

y

��

KKH
!

F̂ // KKG
!

Proof.

HC∗Algnu F //

kkH!

$$

GC∗Algnu

kkG!

zz

HC∗Algnu
sep

F|sep
//

OO

kkGsep,!
��

GC∗Algnu
sep

OO

kkGsep,!
��

KKH
sep,!

F|sep
//

y

��

KKG
sep,!

y

��

KKH
!

F̂ // KKG
!

define F̂ by universal property of y : KKH
sep,! → KKH

!

- F̂ preserves filtered colimits

- must show that ”back face” of the cube commutes

-

HC∗Algnu
sep

F|sep
//

F̃

''��

GC∗Algnu
sep

��

HC∗Algnu F //

kkH

��

GC∗Algnu

kkG

��

KKH
!

F̂ // KKG
!

- outer square commutes by construction

- the two triangles commute

- kkG ◦ F̃ is s-finitary by Lemma 3.105

- F̂ ◦ k̂k
H

is s-finitary by definition of kkH and since F̂ preserves filtered colimits

- F̂ ◦ k̂k
H

is the left Kan extension of kkG ◦ F̃
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- kkG ◦ F is the left Kan extension of kkG ◦ F̃

- hence both are equivalence.

Proposition 3.107. ResLG, IndGH , −omax G and −or G are Ind-s-finitary and preserve
separable algebras.

Proof. preservation of separable algebras: clear (use that groups are second countable)

ResLG: A′ ⊆ ResLG(A) G-invariant and separable

- cofinality

- A′′ algebra generated by LA′

- is separable and L-invariant

- A′ ⊆ ResLG(A′′)

ResLG - preserves inlcusions

- use Lemma 3.104

IndGH : preserves inclusions by same argument as Lemma 3.95

cofinality:

B′ ⊆ IndGH(A) separable

- B′ ⊆ C0(supp(χ))⊗ A

- find separable A′ ⊆ A with B′ ⊆ C0(supp(χ))⊗ A′

– use again that G is second countable

– Lemma 3.104

omaxG:

- preserves filtered colimits
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- cofinality (exercise)

– Lemma 3.104

orG:

- preserves inclusions

- cofinality (exercise)

– Lemma 3.104

Corollary 3.108. We have descended colimit- and compact object preserving functors

1. For any homomorphism L→ G:

ResLG : KKL
! → KKG

! .

2. For H ⊆ G closed:
ResLG : KKL

! → KKG
! .

3. −or G : KKG → KK for ? ∈ {r,max} and −omax : EG → E.

Corollary 3.109. For ! in {se, ex}:

1. Green’s imprimitivity theorem: For H ⊆ G closed:

−o? H
'−→ IndGH(−) o? G : KKH

! → KKG
! .

2. For H ⊆ G open and closed: We have adjunction

IndGH : KKH
! � KKG

! : ResGH .

3. Green-Julg Theorem: If G is compact, then we have an adjunction

ResG : KK! � KKG
! : −oG .

4. Dual Green-Julg: If G is discrete, then we have an adjunction

−omax G : KKG
! � KK! : ResG .
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Proposition 3.110. ResLG has symmetric monoidal refinement.

Proof. have seen: ResLG,|KKLsep
is symmetric monoidal

- Ind : Catex∞ → PrLst is symmetric monoidal functor

- preserves algebras and algebra morphisms

- interpret symmetric monoidal categories and symmetric monoidal functors as commutative
algebras an morphisms between them

4 Applications and calculations

4.1 K-homology

4.1.1 Basic Definitions

in general:

KKG(C,C) is commutative ring:

– since C is commutative algebra and coalgebra

– composition product is second structure, a priori only associative

– in this case the same

Definition 4.1. We define the equivariant K-theory spectrum KUG := KKG(C,C) in
CAlg(Mod(KU))

KKG is enriched in KUG

G - compact group

- all irreducible unitary representations finite dimensional

- every unitary representation completely reducible (orthogonal sum of irreducible ones)
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- Ĝ - set of equivalence classes of irreducible unitary rep’s of G

- L2(G) has G×G-action by left- and right translations

- π ∈ Ĝ

– get homomorphism V ∗π ⊗ Vπ → L2(G)

– v ⊗ w 7→ 〈v, π(g)w〉

– check equivariance: π(h)v ⊗ π(l)w 7→ 〈v, π(h−1gl)w〉
Proposition 4.2 (Peter-Weyl Theorem).⊕

π∈Ĝ

V ∗π ⊗ Vπ ∼= L2(G)

as representation of G×G.

Example 4.3. G - finite

- |G| :=
∑

π∈Ĝ dim(π)2

- can use this to show that one has found a complete set of representatives

consider representation ringoid:

- isoclasses if finite-dimensional (unitary) representations

- operations ⊕, ⊗

- form ring completion,

Definition 4.4. The representation ring R(G) is the ring completion of the ringoid of
finite-dimensional representations.

Lemma 4.5. We have an isomorphism of groups R(G) ∼= Z[Ĝ].

Example 4.6. C2

- Ĉ2 = {1, σ}

- σ2 = 1

- R(C2) ∼= Z⊕ σZ

- (n+ σm)(n′ + σm′) = (nn′ +mm′) + σ(nm′ +mn′)

- R(C2) ∼= Z[ζ2]
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Example 4.7. Cn

- choose nth root of unity, e.g. ζn := e
2πi
n

- Ĉn ∼= Z/nZ

- for [k] ∈ Z/nZ get

- [l] 7→ ζ ln

- R(Cn) ∼= Z[ζn]

Example 4.8. U(1)

- Û(1) ∼= Z

- n 7→ (u 7→ un)

- R(U(1)) ∼= Z[Z] ∼= Z[x, x−1]

Example 4.9. G = SU(2)

- Ĝ has basis πn := Sn(C2)/im(‖ − ‖2Sn+2(C2))

- dim(πn) = n+ 1

- πn ⊗ πm ∼= πn+m + πn+m−2 + . . .

- R(G) has basis (sn)n∈N sn ∼= Sn(C2) - not irreducible

- sn = πn + πn−2 + . . .

- snsm = sn+m

- R(SU(2)) ∼= Z[x] ∼= Z[N]

Proposition 4.10. If G is a compact group, then KUG
0
∼= R(G) (as rings) and KUG

1
∼= 0.

Proof. first calculate KUG
∗ as a group

- Green-Julg: KUG = KKG(C,C) ' KK(C, C∗(G)) ' K(C∗(G))

- C∗(G) ∼=
⊕

π∈Ĝ End(Vπ)

- K(C∗(G)) ' K(
⊕

π∈Ĝ End(Vπ)) '
⊕

π∈ĜKU
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– use here: K(End(Vπ)) ' K(Matdim(π)(C)) ' KU

– KUG
∗
∼=
{ ⊕

π∈Ĝ Z ∗ = 0
0 ∗ = 1

– get KUG
∗
∼= R(G) as Z-graded groups

(ρ, Vρ) - finite-dimensional representation

- is (C,C)-bimodule

- induces [ρ] ∈ KKG
0 (C,C)

– sum goes to sum

– tensor product goes to product

— get ring map R(G)→ KKG
0 (C,C)

must show that this is isomorphism

must show for π in Ĝ

- [π] goes to class of projection onto 1π ∈ End(Vπ) ⊆ C∗(G)

- under −oG see that Vπ goes to (C∗(G), C∗(G))-bimodule Vπ oG ∼= L2(G)⊗ Vπ

– under this identification:

– left G-action on both, L2(G) and Vπ

– right G-action only on L2(G)

- to complete the Green-Julg iso consider restriction along C→ C∗(G)

– projection onto trivial subrepresentation

– insert Peter-Weyl for L2(G)

– get C, C∗(G) -bimodule G(
⊕

π′∈Ĝ V
∗
π′ ⊗ Vπ′ ⊗ Vπ) ∼= Vπ

- this is bimodule which represenents C→ 1π
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Corollary 4.11. If A is a G∗-C∗-algebra, then K∗(A) is a module over R(G).

4.1.2 G-equivariant homology theories

we consider GTop - topological spaces with G-action and equivariant continuous maps

- it is topologically enriched

- distinguish a subclass of objects: G-CW-complexes

Definition 4.12. An n-dimensional G-cell is a G-space of the form G/H × Dn for H
closed in G.

define G-CW-complexes inductively:

- let A be a G-space

Definition 4.13. We consider A as −1-dimensional relative G-CW complex. An n-
dimensional G-CW-complex X relative to A is a space obtained as a push-out (by attaching
n-dimensional G-cells) ⊔

i∈I G/Hi × Sn−1 //

��

Y

��⊔
i∈I G/Hi × Sn−1 // X

for some n− 1-dimensional G-CW-complex Y . A G-CW-complex is a G-space which is
has a filtration X−1 ⊆ X0 ⊆ X1 ⊆ . . . by n-dimensional G-CW -complexes Xn such that
Xn+1 is obtained from Xn by attaching n+ 1-cells and X ∼= colimn∈NXn.

GCW - full subcategory of GTop of G-CW complexes

- Wh - homotopy equivalences (use topological enrichment)

Definition 4.14. We define the ∞-category of G-spaces GSpc := GCW[W−1
h ] as the

Dwyer-Kan localization of G-CW-complexes at homotopy equivalences.

X in GTop

- H closed subgroup

- XH - H-fixed points in X

f : X → Y - a morphism in GTop
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Definition 4.15. f is a G-weak equivalence, if fH : XH → Y H is a weak equivalence in
Top.

Wwe - weak equivalence in GTop

Theorem 4.16. The canonical map GCW[W−1
h ]→ GTop[W−1

we ] is an equivalence.

Corollary 4.17. GSpc ' GTop[W−1
we ].

consider GOrb - full subcategory of GTop on orbits of G

- is topologically enriched

- presents an ∞-category (also denoted by GOrb)

X in GTop

- S ∈ GOrb

- X(S) := `HomGTop(S,X) in Spc

- get functor

GTop→ Fun(GOrbop,Spc) ' PSh(GOrb) , X 7→ X(−)

Theorem 4.18 (Elemendorf’s theorem). The functor GTop→ PSh(GOrb) presents the
Dwyer-Kan localization of GTop at the weak equivalences.

Corollary 4.19. GSpc ' PSh(GOrb)

Remark 4.20. BG ' AutGOrb(G)

GTop→ PSh(GOrb)
evG−−→ Fun(BG,Spc)

- this is a further localization

- inverts maps whose underlying map is a homotopy equivalence

- Fun(BG,Spc) is the home of Borel equivariant homotopy theory

Definition 4.21. An equivariant homology theory is a functor E : GOrb → M for a
stable cocomplete target M
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get colimit preserving functor E : PSh(GOrb)→M

- get functor E : GTop→M which preserves weak equivalences and whose factorization
over PSh(GOrb) preserves colimits

- will all be denoted by E

- for X in GTop

E(X) '
∫
GOrb

X(S)⊗ E(S)

Definition 4.22. An equivariant cohomology theory is a functor E : GOrbop →M for a
stable complete target M.

get limit preserving functor E : PSh(GOrb)op →M

- get functor E : GTopop →M which preserves weak equivalences and whose factorization
over PSh(GOrb)op preserves limits

- will all be denoted by E

- for X in GTop

E(X) '
∫ GOrbop

E(S)X(S)

4.1.3 Equivariant K-theory for compact groups

G - a compact group

- have functor GOrbop,δ → GC∗Algnu: S 7→ C0(S) (consider GOrb as discrete category)

- use here compactness of G in order to ensure that morphisms in GOrb are proper and
therefore preserve C0-functions

now GOrb and GC∗Algnu as enriched

- the functor is enriched
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- factorizes over GOrbop → GC∗Algnu
h

- apply kkGh

- get functor KG : GOrbop → KKG

- define KG := KKG(KG,C) : GOrb→ KKG

Definition 4.23. The functors KG and KG represent G-equivariant KKG-valued K-theory
and K-homology.

B in KKG

- can introduce coefficients in B:

- KG
B := KG ⊗B

- KG,B := KKG(KG, B)

– if B is a commutative algebra, then KG
B takes values in commutative rings

– since C0(S) is a commutative algebra in GC∗Algnu

calculate values on orbits

- use: C0(G/H) ' IndGH(C)

- IndGH(A)⊗B ∼= IndGH(A⊗ ResGH(B))

– get - KG
B (G/H) ' C0(G/H)⊗B ' IndGH(ResGH(B))

- KG,B(G/H) ' CoindGH(ResGH(B))

consider GLCHprop - locally compact G-spaces and proper maps

X 7→ kkG(C0(X))

- B in KKG

Proposition 4.24. If X is homotopy equivalent to a retract of a finite G-CW complex,
then kkG(C0(X))⊗B ' KG

B (X) and KKG(C0(X), B) ' KG,B(X).
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Proof. the class of X for which this is an equivalence has the following closure properties:

- contains GOrb

- is invariant under homotopy equivalence

- is invariant under retracts

- is invariant under attaching G-cells

hence contains all locally compact spaces X which are homotopy equivalent to a retract of
a finite G-CW complex

use:

- GLCHfd
prop - homotopy retracts of finite G-CW complexes

- GLCHfd
prop → PSh(GOrb)ω is localization at homotopy equivalence

- FunRexPSh(GOrb)ω,M) ' Fun(GOrb,M) for finitely cocomplete and idempotent
complete target

- F, F ′ : GLCHfd
prop →M

- both homotopy invariant and excisive for cofibrant closed decompositions

- an equivalence F|GOrb ' F ′|GOrb extends essentially uniquely to an equivalence

absolute K-homology (in analogy to the usage of the ”absolute” in arithmetic)

- Mod(KUG) - valued K-theory and K-homology

- set KG
B := KKG(C, KG

B ) : GOrbop →Mod(KUG)

- KG,B := KKG(C, KG,B) : GOrb→Mod(KUG)

Corollary 4.25. If X is homotopy equivalent to a retract of a finite G-CW complex, then

KG
B(X) ' K(C0(X)⊗B) , KG,B(X) ' KKG(C0(X), B) .

- π∗K
G
B(X) and π∗KG,B(X) are modules over R(G)

F - a set of subgroups of G
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Definition 4.26. F is called a family of subgroups if it is invariant under conjugation
and forming subgroups.

Example 4.27. 1. Cyc

2. All

3. Comp - compact subgroups

4. Fin - finite subgroups

5. {e} - trivial subgroup

6. Prop - proper

7. VCyc - virtually cyclic

fix family F of subgroups

- define ideal IF :=
⋂
H∈F(ker(R(G)→ R(H))

Example:

I := I{e} - dimension ideal

assuem G finite

- γ - conugacy class in G

- F(γ) - family of all H ⊆ G with H ∩ γ = ∅

- (γ) ⊆ R(G) - ideal of ρ with trρ(γ) = 0

- L(γ) : Mod(KUG)↔Mod(KUG)(γ) : incl

– symmetric monoidal Bousfield localization at (KUG α→ KUG)α∈R(G)\γ

Lemma 4.28. KG,B(−)(γ) vanishes on F (γ).

Proof. H in F(γ)

- can find η in R(G) with

– η|H = 0
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– Tr(η)(g) 6= 0 for all g in γ

— hence η 6∈ (γ)

- η acts on KG,B(G/H)(γ) by η|H = 0

- η acts invertibly on KG,B,(γ)(G/H)

– hence KG,B(G/H)(γ) = 0

X - G space

- Xγ - fixed points

- inclusion Xγ → X

Theorem 4.29 (Segal localization). If Xγ admits an invariant open neighbourhood such
hat Xγ → N , then

KG,B(Xγ)(γ) → KG,B(X)(γ)

is an equivalence

Proof. X(γ) ⊆ N - open invariant neighbourhood

- have push-out
Xγ

��

N \Xγ //

��

N

��

X \Xγ // X

- have push-out square

KG,B(Xγ)(γ)

'
��

KG,B(N \Xγ)(γ)
//

��

KG,B(N)(γ)

��

KG,B(X \Xγ)(γ)
// KG,B(X)(γ)
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left vertical arrow is 0→ 0

- right vertical arrow is equivalence

consider equivariant K-cohomology

- KG
B,∗(X) is R(G)-module

- F - a family of subgroups of G

Proposition 4.30. If X is an n-dimensional G-CW complex with stabilizers in F , then

InFπ∗K
G
B(X) ∼= 0

Proof. preparation:

assume: H ∈ F

claim: IFπ∗K
G
B(G/H) ∼= 0

- x in IF

- x⊗ kkG(C0(G/H)) ' IndGH(ResGH(x)) = 0

argue by induction by n

Xn - n-skeleton

long exact sequence

π∗K
G
B(Xn, Xn−1)→ π∗K

G
B(Xn)→ π∗K

G
B(Xn−1)→ π∗−1KG

B(Xn, Xn−1)

outer terms are annihilated by IF

- π∗K
G
B(Xn−1) annihilated by In−1

F

- z a class in π∗K
G
B(Xn)

- i in In−1
F

- iz comes from π∗K
G
B(Xn, Xn−1)

90



- one more application of element of IF annihilates class

an R(G)-module M is IF -complete if

M → limnM/InM := Mˆ
I

is an isomorphism

Corollary 4.31. If X is a G-CW complex with stabilizers in F and lim1 π1KG
B(Xn) ∼= 0,

then π0KG
B(X) is IF -complete

Proof. always have Milnor sequence

0→
1

limπ∗−1KG
B(Xn)→ π∗K

G
B(X)→ lim π∗K

G
B(Xn)→ 0

- by assumption π0KG
B(X) ∼= lim π0KG

B(Xn)

- limm π0K
G
B (X)/ImF

∼= limm,n π0KG
B(Xn)/ImF π0KG

B(Xn) ∼= limn π0KG
B(Xn) ' π0K

G
B (X)

always have map R(G)→ π0KG(X) , i 7→ x · 1

- induced from X → ∗

- get map R(G)ˆIF → π0KG
B(X)

Theorem 4.32 (Atiyah-Segal completion). R(G)ˆI{e} → π∗K
G
B(BG) as isomorphism.

Proof. later

better approach:

- completeness as a property of M in Mod(KUG)

x ∈ R(G)

- M
x−→M →M/x
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- define completion at x by Mˆ
x := limnM/xn

I ⊆ R(G) - an ideal

- need I to be finitely generated

- I = (x1, . . . , xn)

- define I-completion

- Mˆ
I := (. . . (Mˆ

x1
)ˆx2

. . . )ˆxn

- is independent of choice of generators

want M 7→Mˆ
I as left-adjoint of Bousfield localization

- M in Mod(KUG) is I-torsion if M is in Mod(KUG)perf and every element in π∗M is
annihilated by In for some n

- A in Mod(KUG) is I-acyclic if A⊗KUG M ' 0 for all I-torsion modules

- it is enough to check (. . . (KUG/x1)/x2) . . . )/xn for the generators xi of I

- i.e. A[x−1
1 , . . . , x−1

n ] ' 0

- f : N → N ′ in Mod(KUG) is called a I-local equivalence if its cofibre is I-acyclic

- M is I-complete if map(f,M) is an equivalence for all I-local equivalences

- have Bousfield localization LI : Mod(KUG)→ LIMod(KUG)

- LI(M) 'Mˆ
I

for Bousfield localization Mod(KUG) → LIMod(KUG) of Mod(KUG) at (K(x) →
KUG)x∈R(G)\I

- I-adic completion

[GM97, Sec. 4]

Theorem 4.33. If X is a CW-complex with stabilizers in F , then KG
B(X) is I-complete.

Proof. LIMod(KUG) is closed under limits
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- KG
B (X) is a limit over KG

B on finite subcomplexes

- if Y is finite G-CW complex with stabilizers in F then KG
B (Y ) is I-complete

4.1.4 Locally finite K-homology

G locally compact group

- GLCHprop - category of locally compact Hausdorff spaces with G-action and proper
maps

- have functor C0(−) : GLCHop
prop → GC∗Algnu

- B in KKG

- can consider KG
c,B : kk(C0(−))⊗B : GLCHop

prop → KKG

Definition 4.34. The functor KG
c,B : GLCHop

prop → KKG is called the compactly supported
equivariant K-theory with coefficients in B

Definition 4.35. The functor K lf
G,B := KKG(C0(−), B) : GLCHprop → KKG is called the

locally finite equivariant K-homology with coefficients in B

Proposition 4.36. KG
c,B and KG,lf

B are homotopy invariant and excisive for G-invariant
cofibrant decompositions into closed subspaces.

Remark 4.37. absolute versions

Klf
G,B(−) := KKG(C0(−), B) : GLCHprop →Mod(KU)

KG
c,B(−) := KKG(C, C0(−)⊗B) : GLCHop

prop →Mod(KU)

assume: B is separable

- KG
c,B(−) sends countable disjoint unions of second countable spaces into coproducts

- Klf
G,B(−) sends countable disjoint unions of second countable spaces into products provided

B is in KKsep

– values: for G discrete (or more generally H clopen):
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- use (IndGH ,ResGH)-adjunction

Klf
G,B(G/H) ' KKG(C0(G/H), B) ' KKH(C,ResGH(B))

– if H is in addition compact

Klf
G,B(G/H) ' KKH(C,ResGH(B)) ' K(ResGH(B) oH)

these are not equivariant homology or cohomology theories

- ”wedge axiom” not satisfied

- can force an equivariant homology theory

GLCHGfin
prop - spaces which are homotopy equivalent to finite G-CW complexes

Definition 4.38. We define the representable KKG-theory as the left Kan extension

GLCHGfin
prop

KKG(C0(−)⊗A,B)|GLCHGfin
prop
//

%%

Mod(KU)

GTop
RKKG(−,A,B)

88

special case: RKG,B(−) := RKKG(−,C, B)

Proposition 4.39. RKKG(−, A,B) is an equivariant homology theory

values on orbits:

RKG,B(G/H) '
{

K(ResGH(B) oH) H ∈ Comp
KKH(C,ResGH(B)) H 6∈ Comp

Remark 4.40. warning this is not Kasparov’s definition of RKKG(X,A,B)

- the latter uses C0(X)-equivariant KKG-theory of A⊗ C0(X) and B ⊗ C0(X)

- our definition is made to be a homology theory

– this is not clear (probably not true) for Kasparov’s theory
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4.2 Assembly maps

4.2.1 The Kasparov assembly map

G - locally compact group

Problem 4.41. Does −or G : KKG → KK has a left adjoint?

Example 4.42. G compact:

- Green-Julg:
ResG : KK � KKG : −or G

- left adjoint in this case is ResG

- −or G preserves all limits

in general:

Remark 4.43.

C,D - left exact ∞-categories

- R : C → D - finite limit preserving functor

- apply Pro : Catlex → PrR (actually an equivalence)

C R //

yC
��

D
yD
��

Pro(C) R̂ // Pro(D)

- R̂ preserves all limits

- R̂ has left-adjoint L̂

MapD(D,R(C)) ' MapPro(D)(D, yD(R(C))) ' MapPro(D)(D, R̂(yC(C))) ' MapPro(C)(L̂(D), yC(C)) '
colim MapC(L̂(D), C)

- here in last term interpret L̂(D) is a pro-system (Ci)i∈I in C

- MapC(L̂(D), C) is an inductive system (MapC(Ci, C))i∈I in Spc
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- colimit is over I

−or G : KKG → KK preserves finite limits

- admits pro-left adjoint: R̂esG : Pro(KK) � Pro(KKG) : −̂or G

- colimKKG(R̂esG(A), B) ' KK(A,B or G)

Baum-Connes conjecture predicts candidate for R̂esG:

Definition 4.44. A classifying space EFG for a family of subgroups F is a G-CW complex
with

EFG(G/H) '
{
∗ H ∈ F
∅ H 6∈ F

in this definition: EFG is a topological space

- use the notation also for homotopical object in GTop[W−1], GSpc or PSh(GOrb)

Lemma 4.45. A classifying space EFG (as CW -complex) exists.

Proof. use Elmendorf:

- i : GFOrb→ GOrb

– EFG ' i!∗F

– ∗F - final in PSh(GFOrb)

GCW [W−1
h ] ' GSpc ' PSh(GOrb)

there exists G-CW-complex representing this homotopy type i!∗F

Lemma 4.46. If X is a G-CW complex with stabilizers in F , then HomGTop(X,EFG) is
contractible.

Proof. assumption on X:

- X(−) ' i!i
∗X(−) for i : GFOrb→ GOrb
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- i is fully faithful

- i∗i! ' idPSh(GFOrb)

- i∗EFG ' ∗F

use again GCW [W−1
h ] ' GSpc ' PSh(GOrb)

`HomGTop(X,EFG) ' MapPSh(GOrb)(X(−), EFG)

' MapPSh(GOrb)(i!i
∗X(−), EFG)

' MapPSh(GFOrb)(i
∗X(−), i∗EFG)

' MapPSh(GFOrb)(i
∗X(−), ∗F)

' ∗

Corollary 4.47. The classifying space EFG is unique up to contractible choice.

choose G-CW complex EFG

Definition 4.48. Let EFG denote the inductive system of G-finite subcomplexes of EFG
and inclusions.

EFG is filtered

define

R̂esG(A) ' (kkG(C0(X))⊗ ResGA)X∈ECompG

colimKKG(R̂esG(A), B) ' colimX∈EFG KKG(C0(X)⊗ResGA,B) ' RKKG(ECompG,ResGA,B)

in order to identify R̂esG(−) as pro-adjoint must construct natural transformation

RKKG(ECompG,ResGA,B)→ KK(A,B or G)

- natural in B

assume now: X in GLCHprop with proper G-action such that X/G is compact
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will construct Kasparov’s projection p : C→ C0(X) oG

Lemma 4.49. There exists function χ in Cc(X) with
∫
G
χ2(g−1x)µ(g) = 1 for all x.

Proof.

for any [x] in X/G choose preimage x in X and positive function χx in Cc(X)

- by compactness ofX/G: can choose finite family x1, . . . , xn such that image of
⋃n
i=1 supp(χx)

in X/G is all of X/G

- set χ̃ :=
∑n

i=1 χxi

- set ρ(x) :=
∫
G
χ2(g−1x)µ(g)

- this function is positive and G-invariant

- set χ := χ̃√
ρ

- χ has the required properties

from now on G unimodular (for simplicity):

- g 7→ (x 7→ χ(x)χ(g−1x)) is element in Cc(G,C0(X))

- by properness of action

- consider as element pχ of C0(X) or G

p2
χ(h, x) =

∫
G

χ(x)χ(g−1x)χ(g−1x)χ((g−1h−1)g−1x)µ(g)

=

∫
G

χ(x)χ(g−1x)χ(g−1x)χ(h−1x)µ(g)

= χ(x)χ(h−1x)

= pχ(x, h)

check also: p∗χ = pχ: pχ(g−1x, g−1) = χ(g−1x)χ(gg−1x) = pχ(g, x)

Definition 4.50. pχ is called the Kasparov projection

element of KK0(C, C0(X) or G)
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Lemma 4.51. The space R(X) of χ in Cc(X) with
∫
G
χ(g−1x)µ(g) = 1 is contractible.

Proof. Exercise

- see later

- will show: singR(X) is trivial Kan complex

Corollary 4.52. The class pχ is independent of the choice of χ.

notation pX

Definition 4.53. The composition

µKaspX,A,B : KKG(C0(X)⊗ResGA,B)
−oG−−−→ KK((C0(X)⊗ResGA)orG,BorG)

pX⊗A◦−−−−→ KK(A,BorG)

is called the Kasparov assembly map for X with coefficients on B.

want a map of pro systems (natural in B)

(KKG(C0(X)⊗ ResGA,B))X∈ECompG → KK(A,B or G)

- must refine µKaspX,A,B this to natural transformation in X and B

f : X → Y proper G-equivariant

- f ∗ : R(Y )→ R(X)

- χ ∈ R(Y )

the following commutes

A
(pf∗χ⊗A)orG

// (C0(X)⊗ A) or G

(f∗⊗A)orG
��

A
(pχ⊗A)orG

// (C0(Y )⊗ A) or G

KKG(C0(X)⊗ ResGA,B)

f∗
��

−orG // KK((C0(X)⊗ ResGA) or G,B or G)

f∗
��

pf∗χ⊗A
// KK(A,B or G)

KKG(C0(Y )⊗ ResGA,B)
−orG // KK((C0(Y )⊗ ResGA) or G,B or G)

pχ⊗A
// KK(A,B or G)
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must improve this idea

- must get rid of choice of χ

superscript pc inducates proper cocompact G-action

Proposition 4.54. We have a natural transformation of functors from GLCHpc
prop ×

KKG,op ×KK→Mod(KU)

KKG(C0(−)⊗ A,B)→ constKK(A,BorG) .

Proof. R : (GLCHpc
prop)op → Set

- X 7→ R(X)

- have natural transformation of functors (GLCHpc
prop)op → Set

p : R→ HomC∗Algnu(C, C0(−) oG)

- X 7→ (χ 7→ pχ)

- naturality expresses: f ∗pχ = pf∗χ

compose with Ω∞KK, interpret R(−) with values in Spc

- get natural transformation of functors (GLCHpc
prop)op → Spc

– p : R→ Ω∞KK(C, C0(−) oG)

apply (Σ∞+ ,Ω
∞)-adjunction

- get natural transformation of functors (GLCHpc
prop)op → Sp

– p : Σ∞+R→ KK(C, C0(−) oG)

consider functors p, q : GLCHpc
prop ×∆→ GLCHpc

prop

- q : (X, [n]) 7→ X ×∆n

- p : (X, [n]) 7→ X
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– ∆n → ∗ induces natural transformation q → p

E : (GLCHpc
prop)op → Sp any functor

- define H(E) := q!q
∗E (homotopification)

- H(E)(X) ' colim∆op E(X ⊗∆n)

- q!p
∗E(X) ' colim∆op E(X) ' E(X)

- have natural transformation p∗E → q∗E

- get q!p
∗E → q!q

∗E

- hence E → H(E)

- call E homotopy invariant if pr∗X : E(X)→ E(X ×∆1) is an equivalence

Proposition 4.55. E is homotopy invariant if and only of E → H(E) is an equivalence.

Proof. Exercise!

Lemma 4.56. R→ ∗ induces an equivalence H(Σ∞+R)→ constS

Proof. must show:

- colim∆op Σ∞+R(X ⊗∆n) ' S

- colim∆op R(X ⊗∆n) ' ∗ (in Spc, since Σ∞+ preserves colimits)

- R(X ⊗∆−) is simplicial space

- is levelwise discrete since R takes values in sets

- hence R(X ⊗∆−) is simplicial set

- colim∆op R(X ⊗∆n) ' |R(X ⊗∆−)| - realization

suffices to show

- R(X ⊗∆−)→ ∗ is trivial Kan fibration

- any χ ∈ R(X ⊗ ∂∆n) extends to χ̃ ∈ R(X ⊗∆n)
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- set e.g. χ̃(σt) =
√
σχ2(x, t) + (1− σ)χ2(x, t0)

– t ∈ ∂∆

- σt in ∆n - barizentric coordinates

– t0 - zeroth vertex of ∆n

use that KK(C, C0(−) oG) is homotopy invariant

- constS ' H(Σ∞+R)→ H(KK(C, C0(−) oG))
'← KK(C, C0(−) oG)

constS → KK(C, C0(−) or G)→ map(KK((C0(−)⊗ A) oG,B),KK(A,B or G))

- second map is composition

- this yields desired natural transformation

KK((C0(−)⊗ A) oG,B)→ constKK(A,BorG) : GLCHpc
prop →Mod(KU)

restrict RKKG(−,ResGA,B) to GTop/ECompG

- the objects in GLCHGfin
prop in this slice are in GLCHpc

prop

- get natural transformation

µKaspA,B : RKKG(−,ResGA,B)→ constKK(A,BorG)

Conjecture 4.57 (A generalized version of the Baum-Connes Conjecture).

µKaspECompG,A,B
: RKKG(ECompG,ResGA,B)→ KK(A,B or G)

is an equivalence.

it presents R̂esG(A) ' (kkG(C0(X))⊗ ResGA)X∈ECompG as pro-left adjoint of −or G

Conjecture 4.58 (Baum-Connes conjecture for G and B). The assembly map

µKaspECompG,C,B : RKKG(ECompG,ResGC, B)→ KK(C, B or G)

is an equivalence.
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it is known to be false in general

- but still no counter example for B = C

- if G is compact, then can take constant function

- in this case the Baum Connes conjecture is true: This is the Green-Julg theorem

4.2.2 The Meyer-Nest approach

in this section: G is discrete

- there is a version for locally compact groups

- it depends on generalization of the (Ind,Res)-adjunction

– this has not been discussed in the course

Definition 4.59. Define CC as the full subcategory of A in KKG with ResGH(A) ' 0 for
all H in Comp

- the objects of CC are called weakly acyclic objects

- a morphism in KKG is called a weak equivalence if its fibre is weakly acyclic

Lemma 4.60. CC is a thick localizing tensor ideal

Proof. ResGH is symmetric monoidal and preserves colimits

Definition 4.61. Define CI as the localizing subcategory generated by IndGH(A) for all H
in Comp and A in KKH .

Lemma 4.62. CI is a tensor ideal.

Proof. IndGH(A)⊗B ' IndGH(A⊗ ResGH(B))

- the objects of CI are called compactly induced objects
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Example 4.63. kkG(C0(G/H)) in CI

X - a finite G-CW-complex with compact stabilizers

- then C0(X) ∈ CI

Lemma 4.64. The category CC is the right complement of CI, in particular

mapKKG(CI, CC) ' 0 .

Proof. (Ind,Res) - adjunction

- it is at this point where we use discreteness of G

Lemma 4.65. We have a smashing right Bousfield localization

incl : CI � KKG : P .

Proof. CI is localizing

- shows existence of adjunction

– is Dwyer-Kan equivalence at the weak equivalences

must show: smashing

– P (A)→ A - counit

– N(A)→ P (A)→ A cofibre sequence

– N(A) ∈ CC

– since KKG(Q,P (A)→ A) is equivalence for all Q in CI

- P (A) ' P (1)⊗ A

– P (1)⊗ A ∈ CI (since CI is tensor ideal)

– P (1)⊗ A→ A is weak equivalence (since CC is a tensor ideal)
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Definition 4.66. The morphism α : P (1)→ 1 is called the Dirac morphism.

Definition 4.67. The map

µMN
G,A,B : KK(A,P (B) or G)→ KK(A,B or G)

is called the Meyer-Nest assembly map.

Proposition 4.68. The Mayer-Nest and the Kasparov assembly maps are equivalent.

Proof.

RKKG(ECompG,A, P (B)) ' //

' µKasp
G,A,P (B)

��

RKKG(ECompG,A,B)

µKaspG,A,B

��

KK(A,P (B) oG)
µMN
G,A,B

// KK(A,B oG)

upper horizontal equivalence:

- RKKG(ECompG,A,N(B)) ' 0

–RKKG(ECompG,A,N(B)) is colimit of KKG(C0(X)⊗A,N(B)) forX finiteG-CW complex
with compact stabilizers

– kkG(C0(X)⊗ A) ∈ CI

right vertical equivalence: Oyono-Oyono (for discrete G), Chabert-Echterhoff for general
G

- sketch:

- suffices to show equivalence for IndGH(C) in place of B

KKG(C(X)⊗ ResG(A), IndGH(C)) ' KKH(C(ResGH(X))⊗ ResH(A), C)

- colimit over X ⊆ ECompG calculates homology of ECompH ' ∗

- KKH(ResH(A), C) ' KK(A,B oH) ' KK(A, IndGH(C) or G)

– Green imprimitivity

dual Dirac

G - a discrete group
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Lemma 4.69. The following assertions are equivalent:

1. There exists β : 1→ P (1) such that β ◦ α ' id.

2. KKG(CC, CI) ' 0

3. KKG ' CI × CC

Definition 4.70. A morphism β : 1→ P (1) as in Lemma 4.69.1 is called a dual Dirac
morphism and the composition γ := α ◦ β : 1→ 1 is called the γ-element.

one says that G admits a γ-element

Proof. γ is idempotent

- γCC = 0

– use CI ⊗ CC ' 0

– (A→ P (A)→ A)⊗ CC ' 0

- (1− γ)|CI = 0

– use: P (A)→ A is equivalence for A ∈ CI

– then A→ P (A) is also equivalence

– γA = idA

1⇒ 2:

A ∈ CC

- A = γA+ (1− γ)A

- γA = 0

- KKG((1− γ)A, CI) = KKG(A, (1− γ)CI) = 0

2⇒ 3

- clear since also KKG(CI, CC) ' 0
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3⇒ 1

1 decomposes P (1)⊕ 1CC

- take β : 1→ P (1) the projection

Corollary 4.71. If γ = 1, then the Baum-Connes conjecture with coefficients for G holds.

Proof. KKG ' CI

- P (A)→ A is identity

Corollary 4.72. If G admits a γ-element, then

µKaspG,C,B : RKKG(ECompG,A,B)→ RKKG(ECompG,A,B)

is split injective.

Proof. µMN
G,A,B admits a left inverse

injectivity is relevant: implies e.g. Novikov conjecture

Remark 4.73. existence of γ-element is usually shown by providing explicit candidate
for β

Theorem 4.74 ([KS03]). If G is discrete, acts isometrically and properly on a weakly
bolic, weakly geodesic metric space of bounded coarse geometry, then G admits a γ-element.

- a simply-connected complete non-positvely curved Riemannian manifold of bounded
sectional curvature is an example of such a space

- Euclidean buildings with uniformly bounded ramification
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4.2.3 The Davis Lück functor

consider

GCompOrb→Mod(KU)

- S 7→ KKG(C0(S), B)

– value is defined on all of GOrb

– but not functorial for non-proper maps G/H → G/L, i.e. if L/H is not compact

– value for compact H:

KKG(C0(G/H), B) ' KKH(C,ResGH(B)) ' K(B or H)

Problem 4.75. Extend this to a functor GOrb→Mod(KU).

- value at ∗ is K(B or G)

- defines equivariant homology theory

in the following describe solution if G is discrete

- first construction due to Davis-Lück [DL98] (with corrections by M. Joachim [Joa03])

GC∗Catnu - category of C∗-categories with G-action

- construct V : Set→ C∗Catnu:

- describe C∗-category C[S]:

– objects: elements of s

– morphisms: HomC[S](s, s
′) =

{
C s = s′

0 else

- f : S → S ′

– induces obvious functor s 7→ f(s)

108



go from C∗-categories to algebras

have adjunction

Af : C∗Catnu � C∗Algnu : incl

- or with G-action

Af : GC∗Catnu � GC∗Algnu : incl

- C[−] : GSet
V−→ GC∗Catnu Af−→ GC∗Algnu kkG−−→ KKG

Proposition 4.76. kkG(C[S]) ' kkG(C0(S))

Proof. uses another functor

Re : surveyA : C∗Catnu
inj → C∗Algnu

- subscript means: functors must be injective on objects

– A0(C) :=
⊕

C,C′∈C HomC(C,C ′)

– matrix multiplication

– is a pre-C∗-algebra

– A(C) - closure of A0(C)

- Af → A - natural transformation (by universal property of Af )

Proposition 4.77 (M. Joachim [Joa03]). kkG(Af (C))→ kkG(A(C)) is an equivalence.

A(C[S]) ∼= C0(S)

- not natural in S

- left-hand side is covariant

- right hand side is contravariant
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Definition 4.78. We define the Davis-Lück functor

KDL
G,B : GOrb→ KKG

by

KDL
G,B : GOrb

C[−]−−→ GC∗Catnu kkG−−→ KKG −⊗B−−−→ KKG −orG−−−→ KK

KDL
G,B := KK(−, KDL

G,B)

absolute version

Theorem 4.79. There is an equivalence

(KDL
G,B)|GFinOrb ' KKG(C0(−), B)|GFinOrb

Proof. this is a version of Paschke duality [BELa]

assume: H compact, discrete

KDL
G,B(G/H) ' KK(C, (C[G/H]⊗B) or G) ' KK(C, (IndGH(C)⊗B) or G)

' KK(C, (IndGH(ResGH(B)) or G) ' KK(C,ResGHB oH)

' KKH(ResHC,ResGHB) ' KKG(C0(G/H), B)

- suffices to construct this equivalence natural in G/H

- is not easy

Corollary 4.80. KDL
G,B ' RKG,B on G-CW-complexes with compact stabilizers

KDL
G,B represents an equivariant homology theory

- KDL
G,B ' RKG,B on G-CW-complexes with compact stabilizers

discuss now Davis-Lück assembly map

- E : GOrb→M any functor

- M cocomplete
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- F - any family of subgroups

- i : GFOrb→ GOrb - inclusion

– have adjunction i! : Fun(GFOrb,M) � Fun(GOrb,M) : i∗

– have counit i!i
∗E → E

Definition 4.81. The map AsmbF ,E : i!E(∗)→ E(∗) is called the Davis-Lück assembly
map associated to E and F

AsmbF ,E : colimS∈GFOrbE(S)→ E(∗)

- in terms of homology theory

E(EFG)→ E(∗) induced by EFG→ ∗

Theorem 4.82 ( [Kra20], [BELa] ). The Kasparov and Davis-Lück assembly maps are
equivalent.

RKG,B(ECompG)
µKaspECompG,C,B

//

'
��

RKG,B(∗)

'
��

KDL
G,B(ECompG)

AsmbComp,KDL
G,B
// KDL

G,B(∗)

study dependence on B

- KG : KKG → Fun(GOrb,KK)

- B 7→ KDL
G,B

iGH : HOrb→ GOrb - induction functor

- iGH(S) := GoH S

Theorem 4.83 ([Kra20], [BELa]). For any subgroup H of G we have a commutative
square

KKH KDL
H //

IndHG
��

Fun(HOrb,KK)

iGH,!
��

KKG KDL
G // Fun(GOrb,KK)
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Corollary 4.84.

KDL
H,B(EFinH)

Asmb
Fin,KDL

H,B
//

'
��

K(B or H)

'
��

KDL
G,IndGH(B)

(EFinG)

Asmb
Fin,KDL

G,IndG
H

(B)
// K(IndGH(B) or G)

Corollary 4.85. If AsmbFin,KDLG,C,B
is an equivalence for all B in KKG, then AsmbFin,KDLH,C,A

is an equivalence for all A in KKH .

The Baum-Connes conjecture with coefficients is inherited by subgroups.

4.3 The index class

4.3.1 KK-theory for graded algebras

in order construct index classes of Dirac operators naturally need graded C∗-algebras and
corresponding KK-theory

we first introduce the corresponding structures

- we consider complex G-C∗-algebras

- we will interpret C2-graded G-C∗-algebras as G2 := G× C2-equivariant C∗-algebras

- the tensor product is modified to ⊗̂

- Koszul sign rules

consider G2C
∗Algnu

- A ∈ G2C
∗Algnu

- have the following structure

– σ ∈ C2 - non-trivial element

– A ∼= A0 ⊕ A1 as C-vector space, eigenspace decomposition for σ

– A0 - eigenvalue 1
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– A1 - eigenvalue −1

— write elements as a0 + a1

— A0 is subalgebra

— A1A0 ⊆ A1, A0A1 ⊆ A1

— A1A1 ⊆ A0

graded tensor product on G2C
∗Algnu:

change symmetry: ⊗̂

- ⊗̂alg
: G2C

∗Algnu → G2
∗Algnu

C

- underlying bifunctor on ⊗

- symmetry: sA,B : A⊗̂alg
B → B⊗̂alg

A:

sA,B((a0 + a1)⊗ b0 + b1)) = (b0 ⊗ a0 − b1 ⊗ a1) + (b1 ⊗ a0 + b0 ⊗ a1)

- this is the tensor product imported from C2-graded vector spaces

– unit, associator and relations imported, so do not have to check

now check: A⊗̂alg
B is G2-pre C∗-algebra

- form minimal or maximal completion

– yields ⊗̂min and ⊗̂max

Lemma 4.86. The functor kkG2 : G2C
∗Algnu → KKG2 has a symmetric monoidal

refinement for ⊗̂.

Proof. need first to descend ⊗̂ to KKG2
sep

- then extend to KKG2

- consider to version: minimal and maximal
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- it is bicontinuous

– hence descends to homotopy localization

- it is associative

– hence descends to KG2-stabilization

Lemma 4.87.

1. ⊗̂? is semi-exact for semiexact sequences of graded algebras for ? ∈ {min,max}.

2. ⊗̂max is exact.

Proof. exercise

- ⊗̂ descends to semiexact localization

⊗̂ preserves group objects

- by associativity

- ⊗̂ descends to KKC2
sep

tensor unit of ⊗̂ is C

- trivially graded

now extend along Ind-completion

- arguments as in the ungraded case

have functor

ResGG2
: KKG → KKG2

- is symmetric monoidal

Example 4.88 (Examples of graded C∗-algebras).

C with the trivial grading
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- is the tensor unit of ⊗̂

ˆMat2(C)

- 2x2-matrices with even odd grading

- is End(C⊕ Cop)

Clifford algebra

- Cl1 ∼= C[σ]/(σ2 = 1)

- deg(σ) = 1

- σ∗ = σ

- is isomorphic to C∗(Ĉ2) as C2-algebra

Lemma 4.89. We have an isomorphism Cl1⊗̂Cl1 ∼= ˆMat2(C) in G2C
∗Algnu.

Proof. - generators are τ and σ

– let σ act on Cl1 by left multiplication

– let τ act by izσ (z the grading operator)

– izσ∗ = −iσz = izσ

– τσ + στ = izσσ + σizσ = iz − iz = 0

– τσ = izσσ = iz

— 1 =

(
1 0
0 1

)

— τσ =

(
i 0
0 −i

)

— σ =

(
0 1
1 0

)

— τ =

(
0 i
−i 0

)
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Ŝ

- C2 acts on R by multiplication by −1

- Ŝ := C0(R) with induced action in C2C
∗Algnu

- have semisplit exact sequence

0→ C0((0,∞))⊗ Cl1 → Ŝ
ε−→ C→ 0

- ε : Ŝ → C is f 7→ f(0)

- C0(0,∞) ⊗ Cl1 → Ŝ sends f0 + σf1 to t 7→ f0(|t|) + sign(t)f1(|t|) Ŝ is represented on
L2(R)

- as multiplication operator

- Hilbert space again with flip action

Ŝ is a coalgebra

counit:

ε : Ŝ → C - evaluation at 0

Ŝ⊗̂Ŝ acts on L2(R)⊗̂L2(R)

- this is L2(R)⊗̂L2(R) ∼= L2(R2) with the grading given by the flip action again

- define ∆ : Ŝ → Ŝ⊗̂Ŝ

- formally f(x) 7→ f(x⊗̂1 + 1⊗̂x)

R2 has coordinates x0, x1

- on L2(R2) have operators

- x0, x1 - multiplication by coordinates

- have operators z0, z1 - grading operators
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- ziφ = ±φ depending on whether φ is even or odd in xi

- z0φ(x0, x1) := 1
2
((φ(x0, x1) + φ(−x0, x1))− (φ(x0, x1)− φ(−x0, x1))

- z1 analogous

- define x̂0 := x0

- x̂1 := z0x1

- then

- x̂0x̂1 + x̂1x̂0 = 0

- consider unbounded odd operator x̂0 + x̂1 on L2(R2)

- is selfadjoint

- define Ŝ → B(L2(R2))

- f 7→ f(x̂0 + x̂1) by functional calculus

- this takes values in Ŝ⊗̂Ŝ

∆ : Ŝ → Ŝ⊗̂Ŝ is coproduct

obvious: ε⊗ id : Ŝ → Ŝ⊗̂Ŝ → Ŝ is identity

- x 7→ x̂0 + x̂1 → x

Lemma 4.90. (Ŝ, ε,∆) is a commutative coalgebra in C2C
∗Algnu.

Definition 4.91. We define K̂K
G

:= ComodKKG2 (kkG(Ŝ))

have functor

KKG2 → K̂K
G
, A 7→ Ŝ⊗̂A - free comodule

define k̂k
G

: G2C
∗Algnu → K̂K

G
as composition

k̂k
G

: G2C
∗Algnu kkG2−−−→ KKG2 Ŝ⊗̂−−−−→ K̂K

G

Corollary 4.92. K̂K
G

(A,B) ' KKG2(Ŝ ⊗ A,B).
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this is here consequence of definition

- in the classical literature K̂K
G

∗ (A,B) was define by Kasparov in terms of cycles and
relations

- this formula is then a theorem by U. Haag [Haa99, Thm. 3.8]

k̂k
G

is symmetric monoidal functor

- comparison with ungraded case

GC∗Algnu
ResGG2//

kkG

��

G2C
∗Algnu

k̂k
G

��

KKG i // K̂K
G

i from universal property of kkG

- is symmetric monoidal

Proposition 4.93. i is fully faithful.

Proof.

K̂K
G

(i(A), i(B)) ' mapComod(Ŝ)(Ŝ⊗̂A, Ŝ⊗̂B)

' KKG2(Ŝ⊗̂A,ResGG2
B)

' KKG((Ŝ o C2)⊗ A,B)

' KKG(A,B)

to this end show that Ŝ o C2 ' 1

- use exact sequence in C2C
∗Algnu

0→ C0((0,∞))⊗̂Cl1 → Ŝ → C→ 0

- induces exact sequence in C∗Algnu

0→ (C0((0,∞))⊗̂Cl1) o C2 → Ŝ o C2 → Co C2 → 0
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- all algebras in bootstrap class

- apply K-theory

- discuss long exact sequence and show that

K∗(Ŝ o C2) ∼=
{

Z ∗ = 0
0 ∗ = 1

- conclude kk(Ŝ o C2) ' 1

Lemma 4.94. In K̂K
G

we have equivalence S(C) ' Cl1.

4.3.2 The index class

locally finite K-homology captures index classes

X - metric space with G-action by isometries

- H separable Hilbert space with unitary G-action

- φ : C0(X)→ B(H) equivariant homomorphism

Definition 4.95. The pair (H,φ) is called an equivariant X-controlled Hilbert space.

Example 4.96.

choose G-invariant measure µ on X

- H := L2(X,µ)

- G-action by translations

– is isometric since µ is invariant

- φ : C0(X)→ B(H) - action by multiplication operators

(H,φ) is equivariant X-controlled Hilbert space

fix (H,φ) - equivariant X-controlled Hilbert space

- consider A in B(H)G - G-invariant operator
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Definition 4.97. The operator A is called controlled if there exists R > 0 such that if for
all f, f ′ in C0(X) with d(supp(f), supp(f ′)) > R, we have φ(f)Aφ(f ′) = 0. The infimum
of these R is called the propagation of A.

Definition 4.98. A is locally compact if φ(f)A,Aφ(f) ∈ K(H) for all f in C0(X).

Example 4.99 (integral operators).

consider continuous function k : X ×X → C

- G-invariant: k(gx, gy) = k(x, y) for all x, y in X and g in G

- assume k defines bounded integral operator on L2(X,µ):

– (Aψ)(x) :=
∫
X
k(x, y)ψ(y)µ(y)

– A ∈ B(H)G

- the boundedness condition is complicated in general

– but here is a simple case: if X/G is compact, then A is defined

- A is locally compact

– e.g.: φ(f)A factorizes as L2(X,µ)→ Csupp(f)(U)→ L2(X,µ)

— second map is compact

— first map is bounded (uses continuity of of k and finite propagation)

– hence A is locally compact

- assume: k(x, y) = 0 for d(x, y) ≥ R

– then A is controlled with propagation R

Definition 4.100. We define the Roe algebra C∗(X,H, φ)G to be the C∗-algebra generated
by the controlled and locally compact operators on H.

Remark 4.101. in our example: the Roe algebra is generated by integral operators as
above

Definition 4.102. The equivariant X-controlled Hilbert space (H,φ) is called ample if it
absorbs any other X-controlled Hilbert space by a controlled equivariant unitary inclusion.
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this means:

- if (H ′, φ′) is any X-controlled Hilbert space, then there exists isometry U : H ′ → H such
that U is controlled

Remark 4.103 (existence of ample X-controlled Hilbert spaces).

G trivial

- assume: X = supp(µ)

- then (L2(X,µ)⊗ `2, φ⊗ id`2) is ample

- if there exists R > 0 such that dim(L2(B(R, x), µ)) =∞ for all x in X, then (L2(X,µ), φ)
itself is ample

- for non-trivial G:

– it is more complicated [BE17, Prop. 4.2]

– requires assumptions on X

Proposition 4.104 ([BE17, Prop. 8.1 + 4.2]). If X is the underlying metric space of a
complete Riemannian G-manifold with a proper G-action, then X admits an equivariant
ample X-controlled Hilbert space.

assume: (H,φ) is ample

C∗(X,H, φ)G contains any other C∗(X,H ′, φ′)G as corner

- full corner if (H ′, φ′) is also ample

– K(C∗(X,H, φ)G) is then independent of (H,φ)

Definition 4.105. KX (X) := K(C∗(X,H, φ)G is called the coarse K-homology of X.

Remark 4.106 (relation with equivariant coarse K-homology).

for details: [BE17, Sec. 5], [BE23]

- there exists an equivariant coarse homology theory

KXG : GBC→Mod(KU)

121



- GBC - category of G-bornological coarse spaces

– a metric space X with isometric G-acation represents an object of GBC

assume X is very proper (e.g. underlying metric space of a complete Riemannian G-
manifold with a proper G-action)

- then X admits an ample equivariant X-controlled Hilbert space (H,φ)

- K(C∗(X,H, φ)) ' KXG(X)

- f : X → X ′ a proper controlled map

– controlled means: for all S > 0 exists R > 0 such that d(x, y) < S implies d′(f(x), f(y)) <
R.

– induces morphism in GBC

– by functoriality get

– f∗ : KX (X)→ KX (X ′)

functoriality cam be described in terms Roe algebras

- (H,φ) is X-controlled

- f∗(H,φ) := (H,φ ◦ f ∗) is X ′ -controlled

- f∗ induced by C∗(X,H, φ)G → C∗(X ′, H, φ ◦ f∗)
U∗−→ C∗(X ′, H ′, φ′)

– for choice of ample (H ′, φ′)

– for U : (H,φ ◦ f ∗)→ (H ′, φ′) controlled

Example 4.107 (Clifford algebras).

V - an Euclidean vector space

- Cl(V ) - C∗-algebra generated by V under vw + wv = −2〈v, w〉 and v∗ = −v

- is C2-graded such that v in V is odd
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- Cln := Cl(Rn)

G - compact Lie group

- V - finite-dimensional unitary G-representation

Proposition 4.108 (Kasparov). In K̂K
G

we have k̂k
G

(C0(V )) ' k̂k
G

(Cl(V ))

K̂K
G

0 (A⊗ Cln, B) ' K̂K
G

0 (A⊗ C0(Rn), B) ' KKG
−n(A,B)

M complete Riemannian manifold with isometric G-action

Definition 4.109. An equivariant degree n Dirac bundle on M is a C2-graded bundle
of Cln-right modules E → M with a metric and a connection ∇E and a bilinear map
c : T ∗M ⊗ E → E (the Clifford multiplication) such that

1. For Y in T ∗mM the map c(Y ) : Em → Em is odd and Cln-linear.

2. c(Y )∗ = −c(Y ) and c(Y )2 = −‖Y ‖

3. ∇E is hermitean, grading-preserving, and [∇E
X , c(Y )] = c(∇LC

X Y ) (compatibility with
Levi-Civita connection)

4. For v in Rn the right-multiplication ·v is odd, parallel, and satisfies v∗ = −v.

5. All structures a G-invariant

Example 4.110 (Spinc Dirac operator).

define Lie group Spinc(n)

- Cln ∼= Cl(Rn)

- SO(n) acts on Rn

- Spinc ⊆ Cln,∗

- subgroup of unitaries generated by U(1)1Cln and xy for unit vectors x, y in Rn

construct Spinc → SO(n)

- u 7→ u− u∗
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- preserves subspace Rn ⊆ Cln

- have exact sequence

0→ U(1)→ Spinc(n)→ SO(n)→ 0

M - oriented manifold

- P →M - SO(n)-principal bundle of oriented frames

Definition 4.111. A Spinc-structure is a reduction of structure groups of P to Spinc(n)

in detail: it is given by:

- Qc →M - a Spinc-principal bundle

- an isomorphism Qc ×Spinc(n) SO(n) ∼= P

- Sc := Qc ×Spinc Cln is bundle of right Cln-modules

- have (Rn)∗ ⊗ Cln → Cln - left multiplication (and dualization using metric)

– induces Clifford multiplication c : TM∗ ⊗ Sc → Sc induced by left multiplication

- choose connection ∇Sc on Sc which refines Levi-Civita connection

Proposition 4.112. (Sc,∇Sc , c) is a Dirac bundle of degree dim(M).

Spin(n) ⊆ Spinc(n) - a two-fold covering of SO(n)

Definition 4.113. A Spin structure is a reduction of the structure group of Qc to Spin(n).

- get Dirac bundle S := Q×Spin(n) Cl
n

- has an additional real structure

- in this case ∇S is unique: called the Spin connection

concider Dirac bundle (E, c,∇E) of degree n
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Definition 4.114. The Dirac operator associated to the Dirac bundle is defined as the
composition

D := c ◦ ∇ : Γ(S)→ Γ(M,T ∗M ⊗ S)→ Γ(S)

- it is Cln-linear

first order G-invariant Differential operator

- σ(D)2(ξ) = ‖ξ‖2

Lemma 4.115. D is formally selfadjoint on L2(M,E)

an unbounded operator is essentially selfadjoint if its closure is selfadjoint

Lemma 4.116. D is essentially selfadjoint with domain Γ0(X,S) on H := L2(X,S)

consider H := L2(M,E) as equivariant M -controlled Hilbert space

- can form eitD - wave operator, unitary in B(H)G

Theorem 4.117 (finite propagation speed). eitD is controlled with propagation |t|

f ∈ C0(R)

- assume f̂ ∈ Cc(R)

– fix R with supp(f̂) ⊆ [−R,R]

- f̂(ξ) := 1√
2π

∫
R f(t)e−itξdt

- f(D) = 1√
2π

∫
R f̂(t)eitDdt has propagation R

- f(D) is G-invariant

- f(D) is locally compact by Rellichs theorem

- conclude: f(D) ∈ C∗(M,H, φ)G

by density: f(D) ∈ C∗(M,H, φ)G for any f in C0(R)

- get homomorphism Ŝ → C∗(M,H, φ)G

- extends to i(D) : Ŝ⊗̂Cln → C∗(M,H, φ)G
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Definition 4.118. The class of i(D) in KK(Ŝ⊗̂Cln, C∗(M,H, φ)G) ∼= K̂−n(C∗(M,H, φ)G)
is called the equivariant coarse index class indexX (D) of D.

if G acts properly, then indexX ∈ KXG
−n(M) naturally

Example 4.119. special case:

- M compact

- G trivial

- C∗(M,H, φ)G ∼= K

- get class indexX (D) in K−n(K) ∼=
{

Z n even
0 n odd

this is usual index of Dirac operator

Definition 4.120 (Atiyah-Singer). The index of the Spin-Dirac operator is given by
〈Â(TM), [M ]〉.

here Â(TM) - a characteristic class of TM

- can be expressed in terms of Pontrjagin classes (Chern class of TM ⊗ C)

there is a similar formula for the general case:

- E ∼= S ⊗ V

– for V - an auxiliary bundle (with metric and connection)

- indexX (DE) = 〈Â(TM) ∪Ch(V ), [M ]〉

see [BGV04] for details

Remark 4.121 (the K-homology class of a Dirac operator).

there is a more basic class [D] ∈ KKG(C0(M)⊗ Cln,C)

- it is called the K-homology class of D

- is a class in KG
C,−n(M)

represented by a graded Kasparov module (L2(M,E), F, φ)
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- φ : C0(M)⊗ Cln → B(H) action by multiplication operators

- F := D√
1+D2

- use [Mey00, Sec. 5 and 7] in order translate Kasparov modules to maps from Ŝ⊗̂C0(M)⊗
Cln to B(H)

the coarse way:

KXG
−n−1(O∞(M)) ' KG

C,−n(M)

- O∞(M) = R×M

- warped product metric

- g̃ = dt2 + f(t)g , f(t) = 1 for t < 0 and f(t) = t2 for t >> 0

- canonical D̃ extension of D

– a selfadjoint deformation of en+1∂t +D

- is Cln+1-equivariant

[D] corresponds to indexX (D̃) under isomorphism above

- for details on this approach: [Bun18]

back to the general case:

- D for a Dirac bundle

Lemma 4.122. If the spectrum of D has a gap at 0, the indexX (D) = 0.

Proof. assume gap at 0

- f(D) does not depend on values of f near 0

- f 7→ f(D) extends from f ∈ C0(R) to C0(−∞, 0]⊕ C0[0,∞)

- K̂K(C0(−∞, 0]⊕ C0[0,∞)⊗ Cln, C
∗(M,H, φ)G) = 0

– since C0(−∞, 0]⊕ C0[0,∞) is contractible
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Example 4.123 (application to spin Dirac operator).

M - oriented Riemannian complete spin

- G acts by automorphisms

- D - spin Dirac operator

- D2 = ∆ + s
4

(Lichnerowicz formula)

- s - scalar curvature function

- if s ≥ c > 0, then σ(D) ∩ (−c, c) = ∅

- indexX (D) = 0

Remark 4.124. indexX (D) only depends on the smooth spin manifold and coarse class
of the metric

- if indexX (D) 6= 0, then there is no metric with uniformly positive scalar curvature on
the coarse equivalence class

Example 4.125. Rn with flat metric

- known: indexX (D) 6= 0

– construct non-trivial pairings with K-theory classes on Higson corona

– see [Bun23, Ex. 7.6]

- there is no metric in the coarse class of the flat metric of uniformly positive scalar
curvature

every Zn-periodic metric is in this class

Corollary 4.126. T n does not admit a metric of positive scalar curvature

Remark 4.127. M compact spin

- indexX (D) = 〈Â(TM), [M ]〉 is a smooth invariant of M

– does not depend on metric

- α(M) 6= 0 obstructs the existence of metric with positive scalar curvature

Example 4.128 (coarse K-theory of free cocompact G-spaces).
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assume:

- G acts cocompactly and freely on X

- (H,φ) - ample

Lemma 4.129. C∗(X,H, φ)G ∼= C∗r (G)⊗K

KXG(X) ∼= K(C∗r (G)

a formal way to see this:

- Gcan,min → X, g 7→ gx0 is a coarse equivalence

- KXG(Gcan,min) ' K(C∗r (G)) by explicit calculation

4.3.3 Consequences of the Baum-Connes conjecture

for more information see: [MV03], [GAJV19],

Example 4.130 (The Gromov-Lawson-Rosenberg conjecture).

G - a group

- M closed connected Spin-manifold with π1(M) = G

– n := dim(M)

- M̄ →M universal covering

- choose metric on M

– get G-invariant metric on M̄

- D̄spin - Spin-Dirac operator

- indexX (D̄spin) ∈ KX−n(M̄) ∼= K−n(C∗r (G))

since work with spin: all this has real version

- define αG(M) := indexX (D̄spin) ∈ KO−n(C∗r,R(G))
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Corollary 4.131. If M admits psc-metric, then αG(M) = 0.

Conjecture 4.132 (Gromov-Lawson-Rosenberg ). If αG(M) = 0, then M admits a psc
metric.

has counter examples by Th. Schick

need modification:

- consider Bott manifold B:

- compact, spin, dim(B) = 8, π1(B) = 1

- indexX (Dspin
B ) = βR ∈ KO−8(R) Bott element - invertible element

- αG(M)βR = αG(M ×B)

Conjecture 4.133 (modified Gromov-Lawson-Rosenberg conjecture). If αG(M) = 0,
then M ×Bd admits a psc metric for sufficiently large d.

have map equivariant map f : M̄ → EG

- unique up to homotopy

- [D̄spin] ∈ KKOG
−n(C0(M̄,R),R) ∼= KO−n(M) - equivariant K-homology class of D̄spin

- f∗[D̄
spin] ∈ RKKOG

n (EG,R,R) ∼= KO−n(BG)

- under KO∗(BG)Q ∼= H∗(BG,Q[p]) with |p| = 4 this class is

Atiyah-Singer index theorem: f∗[D̄
spin]Q = f∗([M ] ∩ Â(TM))

Conjecture 4.134 (Gromov-Lawson-Rosenberg). If M̄ admits a metric of positive scalar
curvature, then f∗[D̄

spin] = 0. In particular (f∗([M ] ∩ Â(TM)) = 0.

- higher Â-genera of M vanish

– in general: even if D is invertible the class [D] can be non-zero

-µKaspG,R,R(Dspin) = αG(M) ∈ KO−n(C∗R,r(G)) - real version of Kasparov assembly map

Corollary 4.135. Assume that µKaspG,R,R (the real version) is injective (e.g. G admits a

γ-element). Then if M admits a psc metric, then f∗[D̄
spin] = 0 in KO−n(BG).
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this says that f∗[D̄
spin] = 0 is necessary condition

- f∗[D̄
spin] = 0 in KO−n(BG) is very close to existence of psc metric

- e.g. for trivial group: Stolz

Example 4.136 (signature operator).

M oriented

dim(M) = 2l even

E =
⊕n

i=0 ΛiT ∗M

- has Dirac bundle structure of degree 0

- grading on p-forms by ip(p−1)+l∗ on ΛpT ∗M

– there exists a Dirac bundle structure

- Dirac operator d+ d∗ = Dsign

- get class indexX (Dsign) ∈ KXG
0 (M)

Proposition 4.137. If M is compact and l is even, then indexX (Dsign) = sign(M).

fix G

- consider M compact connected manifold with G = π1(M)

- M̄ →M universal covering

- G-action

- f : M → BG classifying map

- Dsign gives rise to class [Dsign] ∈ KK0(C(M),C) ∼= K0(M) - K-homology

Conjecture 4.138 (Novikov-Conjecture). The class f∗[D
sign]Q in K0(BG)Q only depends

on the homotopy type of M .

under K∗(BG)Q ∼= Hev(M,Q)
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- f∗[D
sign]Q = f∗([M ] ∩ L(TM))

– L(TM) - characteristisc class of tangent bundle

– apriori depends on smooth structure

– actually only on topological manifold

Conjecture 4.139 (Novikov-Conjecture). The class f∗([M ] ∩ L(TM)) in Hev(BG,Q)
only depends on the homotopy type of M .

- D̄sign - signature operator on M̄

- KG(C0(M̄),C) ∼= K(C(M),C)

- [D̄sign] = [Dsign] under this iso

Theorem 4.140 (Mischenko-Fomenko). The class indexX (D̄sign) ∈ K0(C
∗
r (G)) is a

homotopy invariant of M̄ .

Corollary 4.141. If µKaspG,C,C is rationally injective, then the Novikov conjecture holds for
G.

Example 4.142 (L2-index theorem).

M closed compact, connected

- π1(M) = G

- D - Dirac operator of degree 0

- indexX (D) ∈ KX0(M) ∼= Z

- M̄ - universal covering

- D̄ - G-invariant

- indexX (D̄) ∈ KX0(M̄) ∼= K0(C∗r (G))

tr : C∗r (G)→ C
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- f 7→ f(e)

- is faitful: a ∈ C∗, a ≥ 0 and tr(a) = 0 implies a = 0

- tr(1) = 1

get induced map tr : K0(C∗r (G))→ R

- [p] 7→ tr(p)

- extend tr to matrix algebras

Theorem 4.143 (Atiyah L2-index theorem).

tr(indexX (D̄)) = indexX (D) .

Example 4.144 ( Kadison-Kaplansky conjecture).

Conjecture 4.145. If G is torsion-free, then C∗r (G) does only have the trivial projections
0 and 1.

Proposition 4.146. If µKaspG,C,C is surjective, then the Kadison-Kaplansky conjecture holds.

Proof. claim: if p is projection in C∗r (G), then tr(p) ∈ Z

assume claim:

- note: 0 ≤ p ≤ 1

- hence tr(p) ∈ {0, 1}

- trace faithful

- hence p ∈ {0, 1}

show claim:

p = µKaspG,C,C(x)

- x ∈ RKK0(EG,C,C)
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- there exists Spinc-manifold M of even dimension

- exists map f : M → BG (classifying M̄)

- M̄ → EG

- x = f∗([D
spinc ])

- µKaspG,C,C(x) = indexX (D̄Spinc) in K0(C∗r (G))

- Atyiah L2-index theorem tr(p) = tr indexX (D̄Spinc) = indexX (DSpinc) ∈ Z

why do we need G to be torsion-free:

assume G has torsion element g

- order n

- q := 1
n

∑n−1
i=0 h

n is non-trivial projection

- tr(q) = 1
n

- so assumption on torsion of G is necessary

Question: Does tr : K(C∗r (G)) → R take values in 1/nZ where n is the is the common
multiple of torsion

Corollary 4.147 (A consequence of Kadison-Kaplansky). Q[G] has no non-trivial idem-
potent

Example 4.148 (Zero-in-the -spectrum conjecture).

M - compact aspherical

Conjecture 4.149. 0 is in the spectrum of of one of the Hodge Laplacians on M̄

G = π1(M)

Proposition 4.150. injectivity of the Assembly map implies the zero-in Zero-in-the
-spectrum conjecture

Proof. assume: dim(M) is even
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note: (D̄sign)2 =
⊕dim(M)

n=0 ∆n

argue by contradiction

- then D̄sign is invertible

use: [Dsign] 6= 0 in K0(M)

- even rationally by Atiyah-Singer

- since [M ] ∩ L(TM) 6= 0

- look at degree-dim(M)-component which is [M ]

µKaspG,C,C([Dsign]) = indexX (D̄sign) = 0

contradiction

for even case cross with circle

Farber-Weinberger: there exists non-aspherical examples with no zero in the spectrum
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