NONCOMMUTATIVE HOMOTOPY THEORY II

Ulrich Bunke*,

July 21, 2023

Contents

1 Intro to the course 2
$2 \quad G$-C ${ }^{*}$-algebren 2
2.1 Basic Definitions 2
2.1.1 $\quad G$-C ${ }^{*}$-algebras 2
2.1.2 First examples 4
2.1.3 Categorical properties of $G C^{*} \mathbf{A l g}{ }^{\text {niu }}$ 6
2.1.4 Two-categorical structure 9
2.1.5 Tensor products 10
2.2 Induction and Restriction 11
2.2.1 Restriction 11
2.2.2 Induction 11
2.2.3 Coinduction 13
2.2.4 multiplicative induction 14
2.3 Crossed products 14
2.3.1 Haar measures 14
2.3.2 The maximal crossed product 17
2.3.3 Covariant representations 19
2.3.4 The reduced crossed product 20
2.3.5 \quad Further aspects and examples 21
$3 \mathrm{KK}^{G}$ 23
3.1 Homotopy invariance 23
3.1.1 The localization 23

[^0]3.1.2 Descend of functors 24
$3.2 \quad G$-stability 27
3.2.1 The localization 27
3.2.2 Descend of functors 35
3.2.3 Murray von Neumann equivalence and weakly equivariant maps, Thomsen stability 42
3.2.4 Hilbert C^{*}-modules and bimodules 50
3.2.5 Imprimitivity and some adjunctions 59
3.3 Forcing exactness and Bott 64
3.3.1 The localization $L_{!}$| 64
3.3.2 Bott periodicity and $\mathrm{KK}_{\text {sep }}^{G}$ and $\mathrm{E}_{\text {sep }}^{G}$ 66
3.3.3 Descend of functors 69
3.3.4 Extension to from separable to all C^{*}-algebras 73
4 Applications and calculations 79
$4.1 K$-homology 79
4.1.1 Basic Definitions 79
4.1.2 G-equivariant homology theories 83
4.1.3 Equivariant K-theory for compact groups 85
4.1.4 Locally finite K-homology 93
4.2 Assembly maps 95
4.2.1 The Kasparov assembly map 95
4.2.2 The Meyer-Nest approach 103
4.2.3 The Davis Lück functor 108
4.3 The index class 112
4.3.1 $K K$-theory for graded algebras 112
4.3.2 The index class 119
4.3.3 Consequences of the Baum-Connes conjecture 129
References 135
1 Intro to the course
$2 G-C^{*}$-algebren

2.1 Basic Definitions

2.1.1 $G-C^{*}$-algebras

G - a group

- $B G$ category with one object $*$ and automorphisms G

Definition 2.1. We define the category of G - C^{*}-algebras as $G C^{*} \mathbf{A l g}^{\mathrm{nu}}:=\boldsymbol{\operatorname { F u n }}\left(B G, C^{*} \mathbf{A l g}^{\mathrm{nu}}\right)$.
explicitly:

- objects: C^{*}-algebras A with action $\alpha: G \rightarrow \operatorname{Aut}_{C^{*} \mathbf{A l g}^{\mathrm{mu}}}(A)$
- write (A, α)
$-g \mapsto \alpha_{g}$
$-\alpha_{g h}=\alpha_{g} \circ \alpha_{h}$ for all g, h in G
- morphisms: $f:(A, \alpha) \rightarrow(B, \beta)$
- $f: A \rightarrow B$ - morphism of C^{*} algebras
- condition: $f\left(\alpha_{g} a\right)=\beta_{g} f(a)$ for all g in G
this is good for discrete groups
- for topological group G : use topological enrichment to put continuity requirement
- $B G$ is topologically enriched
$-\operatorname{Hom}_{B G}(*, *) \cong G$
- $C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is topologically enriched
$-\operatorname{Hom}_{C^{*}} \boldsymbol{A l g}^{\mathrm{nu}}(A, B)$ has point-norm topology
- write $\mathbf{F u n}_{c}$ for functors in the enriched sense: continuous on topological mapping spaces

Definition 2.2. For a topological group we define the category of G - C^{*}-algebras as $G C^{*} \mathbf{A l g}^{\mathrm{nu}}:=\operatorname{Fun}_{c}\left(B G, C^{*} \mathbf{A l g}^{\mathrm{nu}}\right)$.
explicitly:

- additional requirement: $G \ni g \mapsto \alpha_{g}(a) \in A$ is continuous for every a in A
note: $\alpha: G \rightarrow \operatorname{Aut}(A)$ is not necessarily continuous for the norm topology

2.1.2 First examples

trivial action:

- A in $C^{*} \mathbf{A l g}{ }^{\mathrm{nu}}$
- set $\alpha_{g}:=\operatorname{id}_{A}$ for all g in G
- $\operatorname{get}(A, \alpha)$ in $G C^{*} \mathbf{A l g}{ }^{\mathrm{nu}}$
- often denoted by \underline{A}
X locally compact space
- $\rho: G \times X \rightarrow X$ continuous G-action
- $\alpha_{g}: C_{0}(X) \rightarrow C_{0}(X)$
$-\left(\alpha_{g} f\right)(x):=f\left(\rho_{g^{-1}}(x)\right)$
- is continuous
$-\operatorname{get}\left(C_{0}(X), \alpha\right)$ in $G C^{*} \mathbf{A l g}{ }^{\mathrm{nu}}$
even better: Gelfand duality is topologically enriched
$\operatorname{Aut}_{C^{*}} \operatorname{Alg}^{\mathrm{nu}}\left(C_{0}(X)\right) \cong \operatorname{Aut}_{\mathbf{T o p}}(X)$
- compact open topology on $\operatorname{Aut}^{\operatorname{Top}}(X)$
- point-norm topology in $\operatorname{Aut}_{C^{*}} \mathbf{A l g}^{\mathrm{nu}}\left(C_{0}(X)\right)$
some warnings:
note: in general G does not act continuously on $C_{b}(X)$
Problem 2.3. Show that the action of \mathbb{R} on $C_{b}(\mathbb{R})$ is not continuous.
- $G \rightarrow \operatorname{Aut}\left(C_{0}(X)\right)$ is not norm continuous

Problem 2.4. Let T_{u} be the translation by u in $U(1)$. Show that $\left\|T_{u}-\mathrm{id}\right\|=2$ if $u \neq 1$.
recall multiplier algebra $M(A)$ of A

- hast strict topology:
- $m_{i} \rightarrow m$ if $m_{i} a \rightarrow m a$ in norm for all a in A
$\rho: G \rightarrow U(M(A))$ homomorphism
- continuous for the strict topology
- define $\alpha: G \rightarrow \operatorname{Aut}(A)$
$-\alpha_{g} a:=\rho_{g} a \rho_{g^{-1}}$
$-g \mapsto \alpha_{g}$ is continuous
- get (A, α) in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
$\rho: G \rightarrow U(H)$ unitary representation of G on Hilbert space
- assume ρ is strongly continuous (will always be assumed)
- means: $(g, h) \mapsto \rho_{g} h$ is norm continuous for all h in H

Problem 2.5. Recall that $B(H)=M(K(H))$. Show that the strict and the strong topology on $U(B(H))$ coincide.

- hence ρ is strictly continuous
- for any G-invariant (under conjugation) subalgebra A of $K(H)$
- (A, α) in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
$-\alpha_{g} a:=\rho_{g} a \rho_{g^{-1}}$

Example 2.6. it is not natural to require that ρ is norm continuous

- $G \times X \rightarrow X$ continuous on locally compact space
- $L_{g}: X \rightarrow X$ action of g in G
- μ a G-invariant Radon measure
- recall Radon measure:
- finite on compact sets
$-\mu(C)=\inf _{C \subseteq U} \mu(U)$ (outer regular)
$-\mu(U)=\sup _{K \subseteq U} \mu(K)$ (inner regular on opens)
- means: $L_{g, *} \mu=\mu$ for all g in G
- $L^{2}(X, \mu)$ has unitary G-action
$-\left(\rho_{g} f\right)(h):=f\left(g^{-1} h\right)$
- unitary: $\int_{G} \mid f\left(\left.g^{-1} h\right|^{2} \mu(h)=\int_{G}|f(h)|^{2} L_{g, *} \mu(g)=\int_{G}|f(h)|^{2} \mu(g)\right.$
- also notation: $L_{g, *} \mu(h)=\mu(g h)$
- $\rho: G \rightarrow U\left(L^{2}(X, \mu)\right)$ is strongly continuous, but in general not norm continuous

Problem 2.7. Show these assertions.

2.1.3 Categorical properties of $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$

recall: $C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is complete and cocomplete
have forgetful functor $G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$
Corollary 2.8. The forgetful functor $G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is conservative.
Corollary 2.9. For a discrete group G the category $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is complete and cocomplete and $G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$ preserves limits and colimits.
for a diagram $A: I \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- limit or colimit is formed in $C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- gets induced G-action
for topological group:
- $\operatorname{colim}_{I} A$ has induced G-action
- it is again continuous

Problem 2.10. Show that the induced G-action on a colimit of G - C^{*}-algebras is continuous.
Lemma 2.11. For a topological group the category $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is cocomplete and $G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow$ $C^{*} \mathbf{A l g}^{\mathrm{nu}}$ preserves colimits.

- $\lim _{I} A$ also has an induced G-action
- this is not always continuous

Example 2.12. $U(1)$ is a topological group

- $C(U(1))$ has actions α_{n} given by $\left(\alpha_{n, u} f\right)(v):=f\left(u^{n} v\right)$
- action on $\prod_{n \in \mathbb{N}}\left(C\left(S^{1}\right), \alpha_{n}\right)$ is not continuous

Problem 2.13. Show this assertion.
but finite limits are ok
Lemma 2.14. $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is finitely complete and $G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$ preserves limits.
Problem 2.15. Show Lemma 2.14.
Proposition 2.16. $G C^{*} \mathrm{Alg}^{\mathrm{nu}}$ has all products.

Proof. $\left(\left(A_{i}, \alpha_{i}\right)\right)_{i \in I}$ family in $G C^{*} \mathbf{A l g}^{\text {nu }}$

- form $\prod_{i \in I} A_{i}$ in $C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- get induced G-action α
$-\alpha_{g}:=\prod_{i \in I} \alpha_{i, g}$
- $g \mapsto \alpha_{g} f$ is not continuous in general
- call f continuos if this is the case
$\left(\prod_{i \in I} A_{i}\right)^{c}$ subset of continuous elements
- observe: is G-invariant closed $*$-subalgbera

Problem 2.17. Show this assertion.
α_{g}^{c} - restriction of α_{g} to continuous elements
claim: $\left(\left(\prod_{i \in I} A_{i}\right)^{c}, \alpha^{c}\right)$ represents products
check universal property:
$\left(f_{i}:(T, \beta) \rightarrow\left(A_{i}, \alpha_{i}\right)\right)$ given

- induced map $f: T \rightarrow \prod_{i \in I} A_{i}$ is G-equivariant such that $\mathrm{pr}_{i} \circ f=f_{i}$
- takes values in continuous elements
$-\left\|\alpha_{g} f(t)-f(t)\right\|=\sup _{i \in I}\left\|\alpha_{i, g} f_{i}(t)-f_{i}(t)\right\|=\sup _{i \in I}\left\|f_{i}\left(\beta_{g} t-t\right)\right\| \leq\left\|\beta_{g} t-t\right\|$
- use that f_{i} is contractive for every i

Corollary 2.18. For every topological group the category $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is complete and cocomplete.
G-topological

- $G^{\delta}-G$ with discrete topology
- (A, α) in $G^{\delta} C^{*} \mathbf{A l g}^{\mathrm{nu}}$
define $A^{c}:=\left\{f \in A \mid G \ni g \mapsto \alpha_{g} f\right.$ is continuous $\}$
Lemma 2.19. A^{c} is a sub- C^{*}-algebra and $\alpha_{\mid A^{c}}$ is continuous.

Proof. f, f^{\prime} in A^{c} implies that $f+\lambda f^{\prime}, f f^{\prime}$ and $f *$ belong to A^{c}

- since operations of A are continuous
- α_{g} preserves A^{c} by associativity
A^{c} is closed $a_{i} \rightarrow a, a_{i} \in A^{c}$ implies $a \in A^{c}$
$-\left\|\alpha_{g} a-a\right\| \leq\left\|\alpha_{g}\left(a-a_{i}\right)\right\|+\left\|\alpha_{g} a_{i}-a_{i}\right\|+\left\|a_{i}-a\right\|$
- first chose i to make $\left\|a_{i}-a\right\|$ small
- then also $\left\|\alpha_{g}\left(a-a_{i}\right)\right\|$ is small independently of g
- then choose g to make $\left\|\alpha_{g} a_{i}-a_{i}\right\|$ small
(A, α)
Proposition 2.20. Show that there is a right Bousfield localization

$$
\operatorname{Res}_{G^{\delta}}^{G}: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \leftrightarrows G^{\delta} C^{*} \mathbf{A l g}^{\mathrm{nu}}:(-)^{c}
$$

Proof. $\operatorname{Hom}_{G C^{*}} \operatorname{Alg}^{\text {gux }}\left(A, B^{c}\right) \cong \operatorname{Hom}_{G^{\delta} C^{*}} \operatorname{Alg}^{\text {nu }}\left(\operatorname{Res}_{G^{\delta}}^{G} A, B\right)$
it is clear that $\operatorname{Hom}_{G C^{*}} \operatorname{Alg}^{\text {nu }}\left(A, B^{c}\right) \subseteq \operatorname{Hom}_{G^{\delta} C^{*}} \operatorname{Alg}^{\operatorname{nu}}\left(\operatorname{Res}_{G^{\delta}}^{G} A, B\right)$
given $f \in \operatorname{Hom}_{G^{\delta} C^{*}} \mathbf{A l g}^{\text {nu }}\left(\operatorname{Res}_{G^{\delta}}^{G} A, B\right)$

- claim f takes values in B^{c}
$-\alpha_{g} f(a)=f\left(\beta_{g} a\right)$
- use $g \mapsto \beta_{g} a$ is continuous
the following are egeneral facts following from the Bousfield localization
Corollary 2.21. $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is complete and cocomplete. Colimits are calculated in

2.1.4 Two-categorical structure

$C^{*} \mathbf{A l g}^{\mathrm{nu}}$ has some two categorical structure

- $f, g: A \rightarrow B$
- could be conjugated by u in $M(B): f=u g u^{*}$
- turns $\operatorname{Hom}_{C^{*}} \mathbf{A l g}^{\mathrm{nu}}(A, B)$ into a category $\operatorname{Fun}(A, B)$
- composition of 2-morphism u with 1 -morphism h is only partially defined: $h \circ u:=$ $M(h)(u)$
- needs h to be essential
$(A, \alpha),(B, \beta)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- G acts on $\operatorname{Fun}(A, B)$ by conjugation
$-g^{*} f:=\beta_{g}^{-1} \circ f \circ \alpha_{g}$
$f:(A, \alpha) \rightarrow(B, \beta)$
- f can be equivariant
- $f \in \operatorname{Fun}(A, B)^{G}$ - one-categorical invariants
$-g^{*} f=f$
$-f \circ \alpha_{g}=\beta_{g} \circ f$
could also require $f \in \operatorname{Fun}(A, B)^{h G}$ - two categorical invariants
- f is weakly equivariant:
$-f$ extends to pair (f, ρ)
$-\rho: G \rightarrow U(M(B))$ strictly continuous
- cocylcle relation: $\beta_{h}\left(\rho_{g}\right) \rho_{h}=\rho_{h g}$
$-g^{*} f=\rho_{g} \cdot f \cdot \rho_{g}^{*}$ for all g in G
$-\rho_{g}: f \stackrel{\cong}{\rightrightarrows} g \cdot f$

2.1.5 Tensor products

consider ? in $\{\min , \max \}$
$-\otimes_{?}-: C^{*} \mathbf{A l g}^{\mathrm{nu}} \times C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is enriched bifunctor

- get induced tensor product $-\otimes_{?}-: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \times G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow G C^{*} \mathbf{A l g}^{\mathrm{nu}}$

Corollary 2.22. $\otimes_{\text {? }}$ equips $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ with a symmetric monoidal structure.
the tensor products inhertis the exactenss properties from the non-equivariant case

- $\otimes_{\text {max }}$ preserves exact sequences
- $\otimes_{\text {min }}$ preserves inclusions

2.2 Induction and Restriction

additional richnesss of equivariant theory comes from change of group functors

2.2.1 Restriction

$\phi: H \rightarrow G$ continuous homomorphism
get restriction functor

- $\phi^{*}: G C^{*} \boldsymbol{A l g}^{\mathrm{nu}} \rightarrow H C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- $\phi^{*}(A, \alpha):=(A, \alpha \circ \phi)$
write often $\operatorname{Res}_{H}^{G}:=\phi^{*}$ - in particular if ϕ is inclusion of a subgroup
forgetful functor $G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is special case

2.2.2 Induction

assume:

- G locally compact
- $H \rightarrow G$ inclusion of closed subgroup
- G / H - locally compact space
A in $H C^{*} \mathbf{A l g}^{\text {nu }}$ with H-action α
- consider space of bounded continuous functions $f: G \rightarrow A$ such that:
$-f(g h)=\alpha_{h^{-1}} f(g)$ for all h in H
$-\operatorname{pr}_{G / H}(\operatorname{supp}(f))$ is compact
- form closure wr.t. norm $\|f\|:=\sup _{g \in G}\|f(g)\|$ in $C_{b}(G, A)$
- denote resulting C^{*}-algebra by $\operatorname{Ind}_{H}^{G}(A)$
- has continuous G-action $\left(\rho_{g} f\right)\left(g^{\prime}\right):=f\left(g^{-1} g^{\prime}\right)$
continuity not completely obvious: $\operatorname{supp}(f)$ is not compact on G in general
Problem 2.23. Show continuity of G-action
extend $\operatorname{Ind}_{H}^{G}$ to morphisms:
$\phi: A \rightarrow A^{\prime}$
- define $\operatorname{Ind}_{H}^{G}(f): \operatorname{Ind}_{H}^{G}(A) \rightarrow \operatorname{Ind}_{H}^{G}\left(A^{\prime}\right)$
$-\operatorname{Ind}(\phi)(f):=\phi \circ f$
Definition 2.24. The functor $\operatorname{Ind}_{H}^{G}: H C^{*} \operatorname{Alg}^{\mathrm{nu}} \rightarrow G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is called the induction functor.

Example 2.25.
$C_{0}(G) \cong \operatorname{Ind}_{1}^{G}(\mathbb{C})$
$C_{0}(G / H) \cong \operatorname{Ind}_{H}^{G}(\mathbb{C})$
H can be open and closed

- the connected component of G
- any subgroup if G discrete
- a clopen subgroup if G totally disconnected, e.g. \mathbb{Z}_{p}
have natural transformation
$b: \operatorname{id} \rightarrow \operatorname{Res}_{H}^{G} \circ \operatorname{Ind}_{H}^{G}$
- $b_{A}: A \rightarrow \operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{H}^{G}(A)\right)$
$-b_{A}(a)(g):=\left\{\begin{array}{cc}\alpha_{h^{-1}} a & h \in H \\ 0 & \text { else }\end{array}\right.$
looks like unit of adjunction, no obvious counit $\left.\operatorname{Ind}_{H}^{G} \circ \operatorname{Res}_{H}^{G}(A)\right) \rightarrow A$

2.2.3 Coinduction

assume: G / H is compact or G discrete
consider again subspace $C_{b}(G, A)^{H}:=\left\{f \in C_{b}(G, A) \mid\left(\forall h \in H \mid \alpha_{h} f(g h)=f(g)\right)\right\}$

- has G-action by left-regular representation
- $\operatorname{Coind}_{H}^{G}(A):=\left(C_{b}(G, A)^{H}\right)^{c}$ - continuous vectors
- $\phi: A \rightarrow B$ homomorphism
$-\operatorname{induces} \operatorname{Coind}_{H}^{G}(\phi): \operatorname{Coind}_{H}^{G}(A) \rightarrow \operatorname{Coind}_{H}^{G}(A), f \mapsto \phi \circ f$
get coinduction functor $\operatorname{Coind}_{H}^{G}: H C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- if G / H is compact, then $\operatorname{Ind}_{H}^{G}=\operatorname{Coind}_{H}^{G}(A)$
- have natural transformation
$-c: \operatorname{Res}_{H}^{G} \circ \operatorname{Coind}_{H}^{G} \rightarrow \mathrm{id}$
$-c_{A}\left(\operatorname{Res}_{H}^{G}\left(\operatorname{Coind}_{H}^{G}(A)\right) \rightarrow A, f \mapsto f(e)\right.$
looks like counit of an adjunction
- indeed have unit $e: \operatorname{Coind}_{H}^{G} \circ \operatorname{Res}_{H}^{G} \rightarrow$ id
$-e_{A}: A \rightarrow \operatorname{Coind}_{H}^{G}(\operatorname{Res}(A))$
$-e_{A}(a)(g):=\alpha_{g^{-1}} a$
Proposition 2.26. We have an adjunction

$$
\operatorname{Res}_{H}^{G}: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \leftrightarrows H C^{*} \mathbf{A l g}^{\mathrm{nu}}: \operatorname{Coind}_{H}^{G}
$$

Problem 2.27. Show Proposition 2.26

2.2.4 multiplicative induction

Z - finite G-set

- can define $A^{\otimes Z}:=\bigotimes_{Z} A$
- get G-action by permutations of tensor factors
$-A^{\otimes Z} \in G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
for unital A can assume Z infinite
- for finite subset F of Z consider $\bigotimes_{F} A$
- for $F \rightarrow F^{\prime}$ inclusion
- use unit to define $\bigotimes_{F} A \rightarrow \bigotimes_{F^{\prime}} A$
$-\otimes_{f \in F} a_{f} \mapsto \otimes_{f \in F} a_{f} \otimes \otimes_{x \in F^{\prime} \backslash F} 1_{A}$
$-\bigotimes_{Z} A:=\operatorname{colim}_{F \subseteq Z,|F<\infty|} \bigotimes_{F} A$
- get G-action by permutation of tensor factors
$\bigotimes_{\mathbb{Z}} \operatorname{Mat}_{2}(\mathbb{C})-$ spin chain

2.3 Crossed products

2.3.1 Haar measures

X - locally compact space

- μ - Radon measure
- properties:
- finite on compact sets
$-\mu(C)=\inf _{C \subseteq U} \mu(U)$ (outer regular), U runs over open subsets
$-\mu(U)=\sup _{K \subseteq U} \mu(K)$ (inner regular on opens), K runs over compact subsets
- μ determined by the functional $C_{c}(X) \rightarrow \mathbb{C}$
$-f \mapsto \int_{X} f(x) \mu(x)$
$\phi: X \rightarrow X^{\prime}$ proper map
- $\phi^{*}: C_{c}\left(X^{\prime}\right) \rightarrow C_{c}(X)$
- ϕ_{*} - push-forward of measures
- defining relation: $\int_{X^{\prime}} f\left(x^{\prime}\right)\left(\phi_{*} \mu\right)(x)=\int_{X} f(\phi(x)) \mu(x)$
G - locally compact group
- μ - Radon measure on G
$L_{g, *} \mu$
- say μ is left invariant if $L_{g, *} \mu=\mu$
- means for all f in $C_{c}(G)$ and g in G

$$
\int_{G} f\left(g^{-1} h\right) \mu(h)=\int_{G} f(h) \mu(h)
$$

Definition 2.28. A non-zero left invariant Radon measure on G is called a Haar measure.
Theorem 2.29. On G there is a unique (up normalization) Haar measure on G.
Remark 2.30. have natural normalization in some cases:

- for compact $G: \int_{G} \mu(g)=1$
- for infinite discrete groups: $\mu(\{e\})=1$

Example 2.31.

G discrete: counting measure: $\sum_{g \in G} \delta_{g}$ is a Haar measure
\mathbb{R}^{n} - Lebesgue measure is a Haar measure
G - a Lie group

- choose vol $\in \Lambda^{\max } \mathfrak{g}^{*}$
- extends uniquely to left invariant volume form $\left(L_{g^{-1}}^{*} \mathrm{vol}\right)(g):=\mathrm{vol}$
- defines Haar measure by $\int_{G} f(g) \mu(g)=\int_{G, o r} f(g) \operatorname{vol}(g)$
μ - Haar measure
- in general μ is not right invariant
$-\int_{G} f(h) R_{g, *} \mu(h)=\int_{G} f(h g) \mu(h)$
- $R_{g, *} \mu$ is left invariant, Radon
- by uniqueness of Haar measure: there exists $\Delta(g)$ in \mathbb{R}^{+}such that $R_{g, *} \mu=\Delta(g) \mu$

Proposition 2.32. $\Delta: G \rightarrow \mathbb{R}_{+}^{*}$ is a continuous homomorphism.

Example 2.33.

G is called unimodular if $\Delta=1$

- compact groups
- discrete groups
- abelian groups
- for a Lie group: if $\operatorname{det} \operatorname{Ad}: G \rightarrow \operatorname{Aut}(\mathfrak{g}) \rightarrow \mathbb{R}^{*}$ is constant 1

Example 2.34. Consider $a x+b$-group $\mathbb{R} \rtimes \mathbb{R}^{*}$

- determine Haar measure and Δ explicitly
$I: G \rightarrow G$ - inversion
$-I_{*} \mu=\Delta^{-1} \mu$
$-\int_{G} f\left(g^{-1}\right) \mu(g)=\int_{G} f(g) \Delta(g)^{-1} \mu(g)$
- $I_{*} \mu, \Delta^{-1} \mu$ are right invariant
- conclude: $I_{*} \mu=c \Delta^{-1} \mu$ for some constant c
- apply I_{*} again:
- get $\mu=c^{2} \Delta \Delta^{-1} \mu=c^{2} \mu$
- conclude $c=1$

2.3.2 The maximal crossed product

- A in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- consider $C_{c}(G, A)$ with convolution product
- $\left(f * f^{\prime}\right)(g):=\int_{G} f(h) \alpha_{h}\left(f^{\prime}\left(h^{-1} g\right)\right) \mu(h)$

Problem 2.35. Check associativity

$$
\begin{aligned}
\left(f^{\prime \prime} *\left(f * f^{\prime}\right)\right)(g) & =\int_{G} f^{\prime \prime}(h) \alpha_{h}\left(\int_{G} f\left(h^{\prime}\right) \alpha_{h}\left(f^{\prime}\left(h^{\prime,-1} h^{-1} g\right)\right) \mu\left(h^{\prime}\right)\right) \mu(h) \\
& \left.=\int_{G} \int_{G} f^{\prime \prime}(h) \alpha_{h}\left(f\left(h^{\prime}\right)\right) \alpha_{h h^{\prime}}\left(f^{\prime}\left(h^{\prime,-1} h^{-1} g\right)\right) \mu\left(h^{\prime}\right)\right) \mu(h) \\
& =\int_{G} \int_{G} f^{\prime \prime}(h) \alpha_{h}\left(h^{-1} l\right) \alpha_{l}\left(f^{\prime}\left(l^{-1} g\right)\right) \mu(l) \mu(h) \\
& =\int_{G}\left(\int_{G} f^{\prime \prime}(h) \alpha_{h}\left(h^{-1} l\right) \mu(h)\right) \alpha_{l}\left(f^{\prime}\left(l^{-1} g\right)\right) \mu(l) \\
& =\left(\left(f^{\prime \prime} * f\right) * f^{\prime}\right)(g)
\end{aligned}
$$

define $*$-operation: $f^{*}(g):=\alpha_{g}\left(f\left(g^{-1}\right)^{*}\right) \Delta(g)^{-1}$
Problem 2.36. Check $\left(f^{*}\right)^{*}=f$ and $\left(f^{\prime} * f\right)^{*}=f^{*} * f^{\prime \prime, *}$.

Proof. $\left(f^{*}\right)^{*}(g)=\alpha_{g}\left(f^{*}\left(g^{-1}\right)\right) \Delta(g)^{-1}=\alpha_{g}\left(\alpha_{g^{-1}}(f(g))\right) \Delta(g)^{-1} \Delta\left(g^{-1}\right)^{-1}=f(g)$

$$
\begin{aligned}
\left(f^{\prime} * f\right)^{*}(g) & =\alpha_{g}\left(\int_{G} f^{\prime}(h) \alpha_{h}\left(f\left(h^{-1} g^{-1}\right)\right) \mu(h)\right)^{*} \Delta(g)^{-1} \\
& =\int_{G} \alpha_{g h}\left(f\left(h^{-1} g^{-1}\right)\right) \alpha_{g}\left(f^{\prime}(h)\right)^{*} \mu(h) \Delta(g)^{-1} \\
& =\int_{G} \alpha_{l}\left(f\left(l^{-1}\right)\right) \alpha_{g}\left(f^{\prime}\left(g^{-1} l\right)\right)^{*} \mu(l) \Delta(g)^{-1} \\
& =\int_{G} \alpha_{l}\left(f\left(l^{-1}\right)\right) \Delta(l)^{-1} \alpha_{l} \alpha_{l-1} g\left(f^{\prime}\left(\left(l^{-1} g\right)^{-1}\right)^{*}\right) \Delta\left(l^{-1} g\right)^{-1} \mu(l) \\
& =f^{*} * f^{\prime, *}
\end{aligned}
$$

G acts by multipliers on $C_{c}(G, A)$
$-(h * f)(g):=\alpha_{h} f\left(g^{-1} h\right)$

- $\left(f^{\prime} * h\right)(g):=f^{\prime}(g h)$
$-h^{*}=h^{-1}$
A acts by multipliers
- $(a * f)(g):=a f(g)$
- $(f * a)(g):=f(g) \alpha_{g^{-1}}(a)$

Problem 2.37. Check $f^{\prime} *(h * f)=\left(f^{\prime} * h\right) * f$ and $\left(f^{\prime} * a\right) * f=f^{\prime} *(a * f)$.
Check: $h * a * h^{-1}=\alpha_{h}(a)$ in multipliers
Proposition 2.38. $C_{c}(G, A)$ with the convolution product and the involution as indicated is a pre-C*-algebra.

Proof. Exercise for discrete groups.
For non-discrete groups

- consider non-degenerated representation $\phi: C_{c}(G, A) \rightarrow B$
- means: $C_{c}(G, A) B \subseteq B$ dense
- get homomorphism $\rho: G \rightarrow U(M(B))$
- get homomorphism $\psi: A \rightarrow M(B)$
- have equality $\phi(f)=\int_{G} \psi(f(g)) \rho_{g} \mu(g)$
- get bound: $\|\phi(f)\| \leq\|f\|_{L^{1}(G, A)}$

Definition 2.39. We define the maximal crossed product $A \rtimes G:=\operatorname{compl}\left(C_{c}(G, A)\right)$.
Proposition 2.40. We have a functor $-\rtimes G: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$.

Proof. $A \mapsto C_{c}(G, A)$ is functor $G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C_{\mathrm{pre}}^{*} \mathbf{A l g}^{\mathrm{nu}}$

- $\phi: A \rightarrow B$ maps to $f \mapsto(g \mapsto \phi \circ f)$

Remark 2.41. $-\rtimes G$ is functorial for weakly equivariant maps
$(\phi, \rho): A \rightarrow B$ weakly equivariant $A \rightarrow B$

- define $f \mapsto\left(g \mapsto \rho_{g} \phi(f(g))\right)$

2.3.3 Covariant representations

(A, α) in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
Definition 2.42. A covariant representation of A is a pair (ϕ, ρ) of a unitary representation $\rho: G \rightarrow U(H)$ and a homomorphism $\phi: A \rightarrow B(H)$ such that $\phi\left(\alpha_{g} a\right)=\rho_{g} \phi(a) \rho_{g}^{*}$ for all g in G and a in A.
note that conjugation action on $B(H)$ is not continuous in general

- can therefore not say that ϕ is just morphism in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- get map $\bar{\phi}_{c}: C_{c}(G, A) \rightarrow B(H)$
- $\bar{\phi}_{c}(f):=\int_{G} \phi(f(g)) \rho_{g} \mu(g)$

Problem 2.43. Show that this is $a *$-homomorphism.
$\bar{\phi}_{c}$ is called the integrated form of (ρ, ϕ)

- extends to $\bar{\phi}: A \rtimes G \rightarrow B(H)$

Definition 2.44. (ϕ, ρ) is non-degenerated if $\phi(A) H$ is dense in H.
Proposition 2.45. There is a bijection between the sets the non-degenerated covariant representation (ϕ, ρ) of (A, G) and non-degenerated representations $\bar{\phi}: A \rtimes G \rightarrow B(H)$

Proof. given (ϕ, ρ) construct $\bar{\phi}_{c}$ and finally $\bar{\phi}$
A and G act as multipliers on $A \rtimes G$
given $\bar{\phi}$ - construct $\phi: A \rightarrow B(H)$ and $\rho: G \rightarrow U(H)$ as above

Remark 2.46. if (ϕ, ρ) is not non-generated, then lose the information about ρ on $(\phi(A) H)^{\perp}$

2.3.4 The reduced crossed product

choose an injective representation $\psi: A \rightarrow B(H)$

- consider $\rho: G \rightarrow U\left(B\left(L^{2}(G, H)\right)\right.$ given by $\left(\rho_{h} v\right)(g)=v\left(h^{-1} g\right)$
- define representation $\phi: A \rightarrow B\left(L^{2}(G, H)\right)$ by $(\phi(a) v)(g):=\psi\left(\alpha_{g^{-1}} a\right) v(g)$
- check: (ϕ, ρ) is covariant

$$
\begin{aligned}
\left(\rho_{h} \phi(a) \rho_{h^{-1}} v\right)(g) & =\left(\phi(a) \rho_{h^{-1}} v\right)\left(h^{-1} g\right) \\
& =\psi\left(\alpha_{g^{-1} h} a\right)\left(\rho_{h^{-1}} v\right)\left(h^{-1} g\right) \\
& =\psi\left(\alpha_{g^{-1} h} a\right) v(g) \\
& =\phi\left(\alpha_{h} a\right) v(g)
\end{aligned}
$$

the covariant representation induces $C_{c}(G, A) \rightarrow B\left(L^{2}(G, H)\right)$

- get norm $\|-\|_{r}$ in $C_{c}(G, A)$ - called the reduced norm

Definition 2.47. We define the reduced crossed product $A \rtimes_{r} G:=\overline{C_{c}(G, A)}{ }^{\|-\|_{r}}$.
get functor $-\rtimes_{r} G: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$
Problem 2.48. Show that $\|-\|_{r}$ is independent of choice of ψ.

Problem 2.49. Show that $A \rtimes_{r} G$ extends naturally to a functor which preserves injections.
have canonical morphism $A \rtimes G \rightarrow A \rtimes_{r} G$

2.3.5 Further aspects and examples

Example 2.50.

$C^{*}(G):=\underline{\mathbb{C}} \rtimes G$-maximal group C^{*}-algebra
$C_{r}^{*}(G):=\underline{\mathbb{C}} \rtimes_{r} G$ - reduced group C^{*}-algebra
Remark 2.51 (Fourier transformation).
G abelian

- \hat{G} - dual group of characters
- Fourier transformation
$-f \mapsto \hat{f}$
$-\hat{f}(\xi)=\int_{G} \xi^{-1}(g) f(g) \mu(g)$
- dual Fourier transformation
$-\check{h}(g):=\int_{\hat{G}} h(\xi) \hat{\mu}(\xi)$
- normalize $\hat{\mu}$ on \hat{G} such that
- $\check{\hat{f}}=f$

Example 2.52.
$\hat{\mathbb{Z}} \cong U(1)$
$\hat{U}(1) \cong \mathbb{Z}$
discrete group $=$ compact group
counting measure corresponds to normalized Haar measure
$\hat{\mathbb{R}} \cong \mathbb{R}$

Lemma 2.53. The Fourier transformation induces an isomorphism $C^{*}(G) \cong C_{0}(\hat{G})$

Example 2.54 (dual group action). \hat{G} acts on $A \rtimes G$

- $(\xi, f) \mapsto(g \mapsto \xi(g) f(g)$
$-(\xi f) *\left(\xi f^{\prime}\right)=\int_{G} \xi(h) f(h) \alpha_{h}\left(\xi\left(h^{-1} g\right) f^{\prime}\left(h^{-1} h\right)\right) d \mu(h)=\xi(g) \int_{G} f(h) \alpha_{h}\left(f^{\prime}\left(h^{-1} g\right)\right) \mu(h)=$ $\left(\xi\left(f * f^{\prime}\right)\right)(g)$
- $(A \rtimes G) \rtimes \hat{G} \cong K\left(L^{2}(G)\right) \otimes A$ (Takai duality)

Example 2.55 (G-graded algebras). G finite
Definition 2.56. A-graded algebra is a C^{*}-algebra with a decomposition $A \cong \bigoplus_{g \in G} A_{g}$ such that $A_{g} A_{g^{\prime}} \subseteq A_{g g^{\prime}}$ for all g, g^{\prime} in G and $A_{g}^{*} \subseteq A_{g^{-1}}$.
$A \rtimes G$ is G-graded

- $A \rtimes G \cong \bigoplus_{g \in G} A$
- write elements as (g, A)
$-(g, a) *\left(g^{\prime}, a^{\prime}\right)=\left(g g^{\prime}, \alpha_{g}(a) a^{\prime}\right.$
G-grading is same information as action of \hat{G} (for G abelian)
- $(A \rtimes G)_{g}$ is image of action of projection $p: \int_{\hat{G}} \xi(g)^{-1} \hat{\alpha}_{\xi} \hat{\mu}(\xi)$

Example 2.57 (finite groups).
G finite

- $L^{2}(G) \cong \bigoplus_{\pi \in \hat{G}} V_{\pi} \otimes V_{\pi}^{*}$ - Peter-Weil
- $C^{*}(G)$ generated by $L_{g}=\oplus_{\pi \in \hat{G}} \pi(g) \otimes \mathrm{id}_{V_{\pi}}$
- projection to factor $V_{\pi} \otimes V_{\pi}^{*}$ is in $C^{*}(G)$
- given by $\int_{G} \chi_{\pi}(g)^{-1} L_{g} \mu(g)$ (where χ_{π} is the character)
- hence $\pi(g) \otimes \mathrm{id}_{V_{\pi}}$ is in $C^{*}(G)$
- Schur Lemma: $\operatorname{End}\left(V_{\pi}\right) \otimes \mathrm{id}_{V_{\pi}^{*}}$ is in $C^{*}(G)$
- $C^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \operatorname{End}\left(V_{\pi}\right)$ - sum of matrix algebras
- $K_{*}\left(C^{*}(G)\right) \cong \mathbb{Z}[\hat{G}]$ representation "ring"

$3 \mathrm{KK}^{G}$

3.1 Homotopy invariance

3.1.1 The localization

start with $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- category is topologically enriched
- write $\underline{\operatorname{Hom}}_{G}(A, B)$ for the topological mapping space
- $\underline{\operatorname{Hom}}_{G}(A, B)=\underline{\operatorname{Hom}}(A, B)^{G}-G$-fixed points with conjugation action
$-\operatorname{Hom}_{\mathbf{T o p}}(X, \underline{\operatorname{Hom}}(A, B))=\operatorname{Hom}_{C^{*}} \mathbf{A l g}^{\text {nu }}(A, C(X) \otimes B)$ for all compact spaces X
get notion of homotopy equivalence
Definition 3.1. We define the Dwyer-Kan localization $L_{h}: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ at the homotopy equivalences.
the following are proved the same way as in the non-equivariant case

Proposition 3.2.

1. $\operatorname{Map}_{G C^{*} \operatorname{Alg}_{h}^{\text {nu }}}(A, B) \simeq \ell \underline{\operatorname{Hom}}_{G}(A, B)$.
2. L_{h} is symmetric mononidal for \otimes ? with ? in $\{\max , \min \}$.
3. L_{h} sends Schochet fibrant squares to pull-back squares.
4. $G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ is left-exact.
5. The bifunctor $\otimes_{\text {? }}$ on $G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ is bi-left-exact.
6. $G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ has all coproducts and L_{h} preserves them.

$$
\begin{aligned}
& L_{h}^{*}: \operatorname{Fun}\left(G C^{*} \operatorname{Alg}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \boldsymbol{F u n}^{W_{h}}\left(G C^{*} \operatorname{Alg}^{\mathrm{nu}}, \mathbf{D}\right) \\
& L_{h}^{*}: \boldsymbol{F u n}^{\mathrm{lex}}\left(G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \boldsymbol{F u n}^{h, S c h}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right) \\
& L_{h}^{*}: \operatorname{Fun}_{(\operatorname{lax})}^{\otimes}\left(G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\widetilde{\leftrightarrows}} \operatorname{Fun}_{(\operatorname{lax})}^{\otimes, W_{h}}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right) \\
& L_{h}^{*}: \boldsymbol{F u n}_{(\operatorname{lax})}^{\otimes, \operatorname{lex}}\left(G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \boldsymbol{F u n}_{(\operatorname{lax})}^{\otimes, S c h}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right)
\end{aligned}
$$

$\Omega \circ L_{h} \simeq L_{h} \circ S$ loops and suspension
Puppe sequence for $f: A \rightarrow B$
$\cdots \rightarrow L_{h}(S(C(f))) \xrightarrow{\Omega\left(i_{f}\right)} L_{h}(S(A)) \xrightarrow{S(f)} L_{h}(S(B)) \xrightarrow{\partial_{f}} L_{h}(C(f)) \xrightarrow{i_{f}} L_{h}(A) \xrightarrow{L_{h}(f)} L_{h}(B)$
each segment is fibre sequence
the verifications are completely analogous as in the non-equivariant case

3.1.2 Descend of functors

$H \rightarrow G$
$G \subseteq L$
consider functors: $\operatorname{Res}_{H}^{G}, \operatorname{Ind}_{G}^{L}, \operatorname{Coind}_{G}^{L},-\rtimes G,-\rtimes_{r} G$
Lemma 3.3. The functor $\operatorname{Res}_{H}^{G}, \operatorname{Ind}_{G}^{L},-\rtimes G,-\rtimes_{r} G$ functors refine to topologically enriched functors.
for $\operatorname{Coind}_{G}^{L}$ is is only true if L / G is compact

- this case is then covered by $\operatorname{Ind}_{G}^{L}$
use: $F: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow G^{\prime} C^{*} \mathbf{A l g}^{\mathrm{nu}}$ a functor
Proposition 3.4. If there is a natural transformation $F(A \otimes B) \cong F(A) \otimes B$ for all commutative algebras B such that $F(A) \cong F(A \otimes \mathbb{C}) \cong F(A) \otimes \mathbb{C} \cong F(A)$ is the identity, then F is topologically enriched.

Proof.

$$
\begin{aligned}
\operatorname{Hom}_{\text {Top }}(X,{\underset{\operatorname{Hom}}{G}}(A, B)) & \cong \operatorname{Hom}_{G}(A, B \otimes C(X)) \\
& \rightarrow \underline{\operatorname{Hom}}_{G^{\prime}}(F(A), F(B \otimes C(X))) \\
& \cong{\underset{\operatorname{Hom}}{G^{\prime}}}(F(A), F(B) \otimes C(X)) \\
& \cong \operatorname{Hom}_{\text {Top }}\left(X, \underline{\operatorname{Hom}}_{G^{\prime}}(F(A), F(B))\right)
\end{aligned}
$$

use additional property to check that this map is the correct one on underlying sets
Lemma 3.5. We have for any C^{*}-algebra B and choice of tensor product that

$$
\operatorname{Res}_{H}^{G}(A \otimes B) \cong \operatorname{Res}_{H}^{G}(A) \otimes B
$$

Proof. obvious
$H \subseteq G$
Lemma 3.6. For B in $C^{*} \mathbf{A l g}^{\mathrm{nu}}, A$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ and $? \in\{\min , \max \}$ we have

$$
\operatorname{Ind}_{H}^{G}(A) \otimes_{?} B \cong \operatorname{Ind}_{H}^{G}\left(A \otimes_{?} B\right)
$$

Proof. - not completely obvious

- $\iota: C_{b}(G, A) \otimes_{?} B \rightarrow C_{b}\left(G, A \otimes_{?} B\right)$ is a map
- but not an isomorphism in general
- similarly $\iota: \operatorname{Ind}_{H}^{G}(A) \otimes_{?} B \rightarrow \operatorname{Ind}_{H}^{G}\left(A \otimes_{?} B\right)$
for surjectivity:
$f \in \operatorname{Ind}_{H}^{G}(A \otimes ? B)$
- choose function χ on G with proper support over G / H such that $\int_{G} \chi(g h) \mu(h)=1$
- $\chi f \in C_{0}\left(G, A \otimes_{?} B\right)$
- $f(g)=\int_{G}\left(\alpha_{h} \otimes \operatorname{id}_{B}\right)(\chi(g h) f(g h)) \mu(h)$
- find approximation $\chi f=\sum_{i}^{\text {finite }} f_{i} \otimes b_{i}+r$ with r as small as we want
- can assume: $\tilde{\chi} f_{i}=f_{i}, \tilde{\chi} r=r$ for some function with proper support over G / H
- $f(g)=\sum_{i}^{\text {finite }} \int_{H} \alpha_{h} f_{i}(g h) \otimes b_{i} \mu(h)+\int_{H} \alpha_{h} r(g h) \mu(h)$
- $\int_{H} \alpha_{h} r(g h) \mu(h)=\int_{H} \alpha_{h} r(g h) \tilde{\chi}(g h) \mu(h)$
- this is small if r is small
for injectivity:
$\operatorname{Ind}_{H}^{G}(A) \otimes_{?} B \rightarrow \operatorname{Ind}_{H}^{G}\left(A \otimes_{?} B\right) \xrightarrow{\chi} C_{0}\left(G, A \otimes_{?} B\right)$ is injective
since it is also $\operatorname{Ind}_{H}^{G}(A) \otimes_{?} B \xrightarrow{\chi \otimes \mathrm{id}_{B}} C_{0}(G, A) \otimes_{?} B \rightarrow C_{0}\left(G, A \otimes_{?} B\right)$

Corollary 3.7. The functor $\operatorname{Ind}_{G}^{L}$ descends to the homotopy localization.
$f \mapsto \operatorname{Coind}_{G}^{L}(f)$ in general not continuous

- only if G / L is compact
- the following exercise shows where the problem is

Problem 3.8. Show that the functor $A \mapsto C_{b}(A)$ on $C^{*} \mathbf{A l g}^{\mathrm{nu}}$ is not continuous.

Lemma 3.9. We have $B \otimes!!\left(A \rtimes_{!} G\right) \cong(B \otimes!!) \rtimes_{!} G$.

Proof. have map $B \otimes_{!!}(A \rtimes!G) \rightarrow(B \otimes!!A) \rtimes_{!} G$

- Wil07, Thm. 2.75] for maximal products
- Ech10, Lem. 4.1] for minimal/reduced

Corollary 3.10. The functors $-\rtimes G$ and $-\rtimes_{r} G$ descend to the homotopy localization.
Lemma 3.11. If G is closed in L and L / G is compact, then we have an adjunction

$$
\operatorname{Res}_{G}^{L}: L C^{*} \mathbf{A l g}^{\mathrm{nu}} \leftrightarrows G C^{*} \mathbf{A l g}^{\mathrm{nu}}: \operatorname{Coind}_{G}^{L} .
$$

Proof. adjunctions descend if the functors do

3.2 G-stability

3.2.1 The localization

general principle
C - ∞-category
$-F: \mathbf{C} \rightarrow \mathbf{C}$ endofunctor

- W_{F} - morphisms that are sent to equivalences by F
- called F-equivalences
- want to understand $\ell: \mathbf{C} \rightarrow \mathbf{C}\left[W_{F}^{-1}\right]$
assume: zig-zag η : id $\leadsto F$
- assume: $\leadsto \in W_{F}$
- more precisely: have sequence of natural transformations

$$
\mathrm{id} \rightarrow F_{1} \leftarrow F_{2} \rightarrow \cdots \leftarrow F_{n}=F
$$

- all components of all these transformations are in W_{F}
let $F \mathbf{C}$ - full subcategory of \mathbf{C} on image of F
- we say that η preserves $F \mathbf{C}$ if $F_{i}(F \mathbf{C}) \subseteq F \mathbf{C}$ and the components of $F_{i} \rightarrow F_{i \pm 1}$ are equivalences for all objects in $F \mathbf{C}$
notation:
$i: F \mathbf{C} \rightarrow \mathbf{C}$ inclusion
$L: \mathbf{C} \rightarrow F \mathbf{C}$ - corestriction of F
Lemma 3.12. If η preserves $F \mathbf{C}$, then the functor $L: \mathbf{C} \rightarrow F \mathbf{C}$ presents its target as the Dwyer-Kan localization of \mathbf{C} at W_{F}.

Proof. must show:
$L^{*}: \operatorname{Fun}(F \mathbf{C}, \mathbf{D}) \xrightarrow{\simeq} \operatorname{Fun}^{W_{F}}(\mathbf{C}, \mathbf{D})$
$-\Phi: F \mathbf{C} \rightarrow \mathbf{D}$

- $L^{*} \Phi:=\Phi \circ F$ obviously inverts W_{F}
- so functor takes values in target as indicated
claim: $i^{*}: \operatorname{Fun}^{W_{F}}(\mathbf{C}, \mathbf{D}) \rightarrow \boldsymbol{\operatorname { F u n }}(F \mathbf{C}, \mathbf{D})$ is inverse
consider $L^{*} \circ i^{*}: \operatorname{Fun}^{W_{F}}(\mathbf{C}, \mathbf{D}) \rightarrow \operatorname{Fun}^{W_{F}}(\mathbf{C}, \mathbf{D})$
- this is $\Phi \mapsto \Phi \circ F$
$-\eta$: id $\leadsto F$ induces $\alpha_{\Phi}:=\Phi(\eta): \Phi \sim \Phi \circ F$
- since Φ inverts W_{F} we know that $\Phi(\eta)$ is equivalence
- get equivalence $\alpha:$ id $\rightarrow L^{*} \circ i^{*}: \boldsymbol{F u n}^{W_{F}}(\mathbf{C}, \mathbf{D}) \rightarrow \operatorname{Fun}^{W_{F}}(\mathbf{C}, \mathbf{D})$
- components α_{Φ}
consider $i^{*} \circ L^{*}: \operatorname{Fun}(F \mathbf{C}, \mathbf{D}) \rightarrow \boldsymbol{\operatorname { F u n }}(F \mathbf{C}, \mathbf{D})$
- this is functor $\Psi \mapsto \Psi \circ F_{\mid F \mathbf{C}}$
- have transformation $\eta_{\mid F \mathbf{C}}: \operatorname{id}_{F \mathbf{C}} \leadsto F_{\mid F \mathbf{C}}: F \mathbf{C} \rightarrow F \mathbf{C}$
- this is equivalence
- get equivalence $\beta_{\Psi}:=\Psi\left(\eta_{\mid F \mathbf{C}}\right): \Psi \simeq \Psi \circ F_{\mid F \mathbf{C}}$
- get equivalence $\beta:$ id $\rightarrow i^{*} \circ L^{*}: \operatorname{Fun}(F \mathbf{C}, \mathbf{D}) \rightarrow \boldsymbol{\operatorname { F u n }}(F \mathbf{C}, \mathbf{D})$
- with components β_{Ψ}

Lemma 3.13. If F is left-exact, then the localization $\ell: \mathbf{C} \rightarrow \mathbf{C}\left[W_{F}^{-1}\right]$ is left-exact

Proof. W_{F} is closed under

- pull-backs
- 2-out-of-3

Lemma 3.14. If \mathbf{C} is symmetric monoidal with bi-left exact \otimes, and $F=-\otimes D$ for some object D, then $\ell: \mathbf{C} \rightarrow \mathbf{C}\left[W_{F}^{-1}\right]$ is left-exact symmetric monoidal.

Proof.
f in W_{F}

- C any object
$-D \otimes(C \otimes f) \simeq C \otimes(D \otimes f)$
$-(D \otimes f)$ is equivalence since $f \in W_{F}$
- hence $D \otimes(C \otimes f)$ is equivalence
- hence $C \otimes f \in W_{F}$
conclude: ℓ is symmetric monoidal
in $\mathbf{C}\left[W^{-1}\right]$
- show: $E \otimes$ - is left-exact:

- use model $F \mathbf{C}$
- all objects in $F \mathbf{C}$
- extend to pull-back in \mathbf{C}

- since $F=-\otimes D$ is left-exact have $P \in F \mathbf{C}$
- square is pull-back in $F \mathbf{C}$ (since latter is full subcategory)

is also pull-back in $F \mathbf{C}$
G-locally compact, second countable
$L^{2}(G)$ - has left-regular representation
- is separable if G is second countable
- define $K_{G}:=K\left(L^{2}(G) \otimes \ell^{2}\right)$ with conjugation action

Definition 3.15. A morphism $f: A \rightarrow B$ in $G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ is called a K_{G}-equivalence if $f \otimes K_{G}: A \otimes K_{G} \rightarrow B \otimes K_{G}$ is an equivalence.
V - Hilbert space with unitary G-action

- $K(V)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ - compact operators with G-action by conjugation
- $V \rightarrow V^{\prime}$ unitary embedding - induces morphism $K(V) \rightarrow K\left(V^{\prime}\right)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$

Lemma 3.16. If V is non-zero and V^{\prime} is separable, then $K(V) \rightarrow K\left(V^{\prime}\right)$ is a $K_{G^{-}}$ equivalence.

Proof.
$K_{G} \cong K\left(L^{2}(G)\right) \otimes K\left(\ell^{2}\right)$ - is K-stable
$V \rightarrow V^{\prime}$ unitary embedding of separable Hilbert spaces (no G-action)

- will show: $K(V) \rightarrow K\left(V^{\prime}\right)$ is K_{G}-equivalence
- use $K(V) \otimes K \rightarrow K\left(V^{\prime}\right) \otimes K$ is isomorphic to left upper corner
$-K(V) \otimes K \otimes K \rightarrow K\left(V^{\prime}\right) \otimes K \otimes K$ is homotopy equivalence
- use $K_{G} \cong K_{G} \otimes K \otimes K$
(V, ρ) - separable Hilbert space with G-action
- $V \otimes L^{2}(G) \cong L^{2}(G, V)$ mit action $(g \cdot f)(h)=\rho_{g} f\left(g^{-1} h\right)$
- construct equivariant unitary: $\phi: V \otimes L^{2}(G) \cong \operatorname{Res}_{1}^{G}(V) \otimes L^{2}(G)$
$-\phi: f \mapsto\left(h \mapsto \rho_{h^{-1}} f(h)\right)$
- write action on target as $g \circ f$ for the moment: $(g \circ f)(h)=f\left(g^{-1} h\right)$
- check: $(g \circ \phi(f))(h)=\rho_{h^{-1} g} f\left(g^{-1} h\right)=\phi(g \cdot f)(h)$
- conclusion:

$$
K(V) \otimes K_{G} \cong \operatorname{Res}_{1}^{G} K(V) \otimes K_{G}
$$

for unitary embedding $V \rightarrow V^{\prime}$ of unitary representations on separable Hilbert spaces

- $K(V) \otimes K_{G} \rightarrow K\left(V^{\prime}\right) \otimes K_{G}$ is isomorphic to $\operatorname{Res}_{1}^{G} K(V) \otimes K_{G} \rightarrow \operatorname{Res}_{1}^{G} K\left(V^{\prime}\right) \otimes K_{G}$
- is equivalence
$F: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow \mathbf{D}$ - functor
Definition 3.17. The functor F is called G-stable if for every equivariant unitary embedding $V \rightarrow V^{\prime}$ of separable Hilbert spaces the induced map $F(A \otimes K(V)) \rightarrow F\left(A \otimes K\left(V^{\prime}\right)\right)$ is a equivalence.
write $\boldsymbol{F u n}^{G s}(\ldots, \ldots)$ for G-stable functors
define $\hat{K}_{G}:=K\left(\left(\mathbb{C} \oplus L^{2}(G)\right) \otimes \ell^{2}\right)$
- $\mathbb{C} \rightarrow \mathbb{C} \otimes \ell^{2} \rightarrow\left(\mathbb{C} \oplus L^{2}(G)\right) \otimes \ell^{2} \leftarrow L^{2}(G) \otimes \ell^{2}$ induce
- $\mathbb{C} \rightarrow K \rightarrow \hat{K}_{G} \leftarrow K_{G}$
- $F:=-\otimes K_{G}$
- $\hat{F}:=-\otimes \hat{K}_{G}$
- get zig-zag

$$
\eta: \operatorname{id} \rightarrow \hat{F} \leftarrow F
$$

Lemma 3.18. $F(\eta)$ is an equivalence

Proof. Lemma 3.16

Definition 3.19. We define the Dwyer-Kan localization

$$
L_{K_{G}}: G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow L_{K_{G}} G C^{*} \mathbf{A l g}^{\mathrm{nu}}
$$

at the K_{G}-equivalences.
set $L_{h, K_{G}}:=L_{K_{G}} \circ L_{h}: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow L_{K_{G}} C^{*} \operatorname{Alg}_{h}^{\mathrm{nu}}$
Corollary 3.20. Assume that G is second countable.

1. $\operatorname{Map}_{L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}}(A, B) \simeq \ell \underline{\operatorname{Hom}}_{G}\left(K_{G} \otimes A, K_{G} \otimes B\right)$
2. $L_{K_{G}}$ is left exact.
3. $L_{K_{G}}$ is symmetric monoidal and induced tensor product on $L_{K_{G}} C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ is bi-leftexact
4. For every stable infty category \mathbf{D} we have an equivalence

$$
L_{h, K_{G}}^{*}: \boldsymbol{\operatorname { F u n }}\left(L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \boldsymbol{F u n}^{h, G s}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right)
$$

Proof.

1. Lemma 3.12
2. Lemma 3.13
3. Lemma 3.14
4.

any functor which inverts K_{G}-equivalence is G-stable:

- use $A \otimes K(V) \rightarrow A \otimes K\left(V^{\prime}\right)$ is a K_{G}-equivalence
- $L_{h, K_{G}}$ is G-stable
any homotopy invariant G-stable functor F inverts K_{G}-equivalences
$f: A \rightarrow B-K_{G}$-equivalence

- F inverts horizontal arrows
- hence F inverts left vertical arrow f
$L_{h, K_{G}}^{*}: \boldsymbol{F u n}^{\text {lex }}\left(G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \boldsymbol{F u n}^{h, G s, S c h}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right)$
$L_{h, K_{G}}^{*}: \boldsymbol{F u n}_{(\operatorname{lax})}^{\otimes}\left(G C^{*} \boldsymbol{A l g}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \operatorname{Fun}_{(\operatorname{lax})}^{\otimes, h, G s}\left(G C^{*} \boldsymbol{A l g}^{\mathrm{nu}}, \mathbf{D}\right)$
$L_{h, K_{G}}^{*}: \boldsymbol{F u n}_{(\operatorname{lax})}^{\otimes, \operatorname{lex}}\left(G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \boldsymbol{F u n}_{(\operatorname{lax})}^{\otimes, h, G s, S c h}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right)$
Proposition 3.21. $L_{K_{G}} C^{*} \mathrm{Alg}_{h}^{\mathrm{nu}}$ is semi-additive

Proof. same proof as for non-equivariant case

Lemma 3.22. $L_{K_{G}} C^{*} \mathrm{Alg}_{h}^{\mathrm{nu}}$ has and $L_{h, K_{G}}$ preserves all countable coproducts.

Proof. L_{K} is Bousfield localization

- preserves all coproducts
for i countable:
- $L_{K}\left(\coprod_{i \in I} A_{i}\right) \simeq L_{K}\left(\bigoplus_{i \in I} A_{i}\right)$
$-K_{G} \otimes \bigoplus_{i \in I} A_{i} \cong \bigoplus_{i \in I} K_{G} \otimes A_{i}$

$$
\begin{aligned}
\ell \underline{\text { Hom }}_{G}\left(K_{G} \otimes \bigoplus_{i \in I} A_{i}, K_{G} \otimes B\right) & \simeq \ell \underline{\mathrm{Hom}}_{G}\left(K \otimes \bigoplus_{i \in I} K_{G} \otimes A_{i}, K_{G} \otimes B\right) \\
& \simeq \ell \underline{\mathrm{Hom}}_{G}\left(K \otimes \bigsqcup_{i \in I} K_{G} \otimes A_{i}, K \otimes K_{G} \otimes B\right) \\
& =\prod_{i \in I} \ell \underline{\operatorname{Hom}}_{G}\left(K \otimes K_{G} \otimes A_{i}, K \otimes K_{G} \otimes B\right) \\
& =\prod_{i \in I} \ell \underline{\operatorname{Hom}}_{G}\left(K_{G} \otimes A_{i}, K_{G} \otimes B\right)
\end{aligned}
$$

if G is compact

- have $\mathbb{C} \rightarrow L^{2}(G) \otimes \ell^{2}$
$-1 \mapsto$ const $\otimes e_{0}$
$-\operatorname{get} \epsilon: \mathbb{C} \rightarrow K_{G}$
Proposition 3.23. $\left(K_{G}, \epsilon\right)$ is tensor idempotent in $G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$

Proof. \mathbb{C}^{\perp} - complement of \mathbb{C} in $L^{2}(G) \otimes \ell^{2}$

$$
\begin{aligned}
\left(L^{2}(G) \otimes \ell^{2}\right) \otimes\left(L^{2}(G) \otimes \ell^{2}\right) & \cong L^{2}(G) \otimes \ell^{2} \oplus \mathbb{C}^{\perp} \otimes\left(L^{2}(G) \otimes \ell^{2}\right) \\
& \cong L^{2}(G) \otimes \ell^{2} \oplus L^{2}(G) \otimes \ell^{2}
\end{aligned}
$$

find family of isometries $U_{t}: L^{2}((-\infty, 0]) \rightarrow L^{2}((-\infty, 1])$ interpolating from the inclusion to unitary
$\phi_{t}:=w^{*} U_{t} v(-) v^{*} U_{t}^{*} w: K_{G} \rightarrow K_{G} \otimes K_{G}$
$\phi_{0}=\epsilon_{G}$
ϕ_{1} is isomorphism

Corollary 3.24. If G is compact, then $L_{K_{G}}: G C^{*} \operatorname{Alg}_{h}^{\mathrm{nu}} \rightarrow L_{K_{G}} G C^{*} \operatorname{Alg}_{h}^{\mathrm{nu}}$ is a left Bousfield localization.

Corollary 3.25. $L_{K_{G}} G C^{*} \mathrm{Alg}_{h}^{\mathrm{nu}}$ has all coproducts and $L_{h, K_{G}}$ preserves coproducts.

3.2.2 Descend of functors

all groups second countable
restriction:

- $H \rightarrow G$
$-\operatorname{Res}_{H}^{G}: G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow H C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$
Lemma 3.26. $\operatorname{Res}_{H}^{G}$ descends to $\operatorname{Res}_{H}^{G}: L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow L_{K_{H}} H C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$.

Proof. - want to show: $L_{K_{H}} \circ \operatorname{Res}_{H}^{G}$ sends K_{G}-equivalences to equivalences

- equivalently: this functor is G-stable
- $V \rightarrow V^{\prime}$ - embedding of G-Hilbert spaces
- $i: K(V) \rightarrow K\left(V^{\prime}\right)$
- $A \otimes i: A \otimes K(V) \rightarrow A \otimes K\left(V^{\prime}\right)$ induced map
$-\operatorname{Res}_{H}^{G}(A \otimes i) \simeq \operatorname{Res}_{H}^{G}(A) \otimes \operatorname{Res}_{H}^{G}(i)$
$-\operatorname{Res}_{H}^{G}(i)$ is $K\left(\operatorname{Res}_{H}^{G}(V)\right) \rightarrow K\left(\operatorname{Res}_{H}^{G}\left(V^{\prime}\right)\right)$
- is induced by $\operatorname{Res}_{H}^{G}(V) \rightarrow \operatorname{Res}_{H}^{G}\left(V^{\prime}\right)$ - isometric inclusion of H-Hilbert spaces
- hence $L_{K_{H}} \circ \operatorname{Res}_{H}^{G}(A \otimes i)$ is an equivalence
induction
- G a closed subgroup of L
- generalize Lemma 3.6

Lemma 3.27. For A in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ and B in $L C^{*} \mathbf{A l g}^{\mathrm{nu}}$ and $? \in\{\min , \max \}$ we have an isomorphism

$$
\operatorname{Ind}_{G}^{L}(A) \otimes_{?} B \cong \operatorname{Ind}_{G}^{L}\left(A \otimes_{?} \operatorname{Res}_{G}^{L}(B)\right)
$$

Proof. same as Lemma 3.6

- have canonical map $\operatorname{Ind}_{G}^{L}(A) \otimes B \rightarrow \operatorname{Ind}_{G}^{L}\left(A \otimes \operatorname{Res}_{G}^{L}(B)\right)$
- must show injectivity and surjectivity
- use $f \mapsto\left(L \ni l \mapsto\left(\mathrm{id}_{A} \otimes \beta_{l}\right) f(l) \in A \otimes B\right)$ in order to identify
- $C_{b}\left(G, A \otimes \operatorname{Res}_{G}^{L}(B)\right)^{G} \cong C_{b}\left(G, A \otimes \operatorname{Res}_{1}^{L}(B)\right)^{G}$
- this preserves supports
- restricts to: $\operatorname{Ind}_{G}^{L}\left(A \otimes \operatorname{Res}_{G}^{L}(B)\right) \cong \operatorname{Ind}\left(A \otimes \operatorname{Res}_{1}^{L}(B)\right)$
- then apply Lemma 3.6

Lemma 3.28. Assume that L is second countable. The functor $\operatorname{Ind}_{G}^{L}: G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow$ $L C^{*} \operatorname{Alg}_{h}^{\mathrm{nu}}$ descends to a functor $\operatorname{Ind}_{G}^{L}: L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow L_{K_{L}} L C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$.

Proof. want to show: $L_{K_{L}} \circ \operatorname{Ind}_{G}^{L}$ sends K_{G}-equivalences to equivalences
abbreviate $F:=L_{K_{L}} \circ \operatorname{Ind}_{G}^{L}: G C^{*} \operatorname{Alg}_{h}^{\mathrm{nu}} \rightarrow L_{K_{L}} L C^{*} \operatorname{Alg}_{h}^{\mathrm{nu}}$

- $\hat{F}:=F\left(-\otimes \operatorname{Res}_{G}^{L}\left(\hat{K}_{L}\right)\right)$
$-\hat{F} \simeq\left(-\otimes \hat{K}_{L}\right) \circ F$
- $\tilde{F}:=F\left(-\otimes \operatorname{Res}_{G}^{L}\left(K_{L}\right)\right)$
$-\tilde{F} \simeq\left(-\otimes K_{L}\right) \circ F$
- have zig-zag $F \rightarrow \hat{F} \leftarrow \tilde{F}$
- by Lemma 3.27 is equivalent to $F \rightarrow\left(-\otimes \hat{K}_{L}\right) \circ F \leftarrow\left(-\otimes K_{L}\right) \circ F$
- these maps are equivalences
now use $\operatorname{Res}_{G}^{L}\left(K_{L}\right) \cong K_{G}$ - see below
- \tilde{F} obviously sends K_{G}-equivalences to equivalences
$-\operatorname{Res}_{G}^{L}\left(L^{2}(L)\right) \cong L^{2}(G) \otimes \ell^{2}$
- $L \rightarrow L / G$ has measurable section s
- here we need that L and L / G are polish spaces
- this is true since separable locally compact Hausdorff spaces are polish
- then apply the measurable section theorem to the image of the map $L \rightarrow L / G \times L$, $l \mapsto(e G, l)$ and the projection $L / G \times L \rightarrow L / G$
- this image is universally measurable
measurable G - isomorphism
- $G \times L / G \rightarrow L,(g, l G) \mapsto g s(l G)$
- induced measure $\mu \otimes \nu$ for Haar measure μ on G and some measure on L / G
$-L^{2}(L) \cong L^{2}(G) \otimes L^{2}(G / L, \nu) \cong L^{2}(G) \otimes \ell^{2}$
crossed products
$? \in\{-, r\}$
Lemma 3.29. If A is in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ and (V, ρ) is a G-Hilbert space, then we have an isomorphism

$$
A \rtimes_{?} G \otimes \operatorname{Res}_{1}^{G}(K(V)) \cong(A \otimes K(V)) \rtimes_{?} G .
$$

Proof. since $K(V)$ is nuclear do not have to specify \otimes
for $?=-$

- use $\otimes_{\max }$
$C_{c}(G, A \otimes K(V)) \xrightarrow{\cong} C_{c}\left(G, A \otimes \operatorname{Res}_{1}^{G}(K(V))\right)$
$-f \mapsto\left(g \mapsto f(g)\left(\mathrm{id} \otimes \rho_{g}\right)\right)$
- isomorphism of $*$-algebras
- inverse: $f \mapsto\left(g \mapsto f(g)\left(\mathrm{id} \otimes \rho_{g^{-1}}\right)\right)$
- use then Wil07, Lem. 2.75] or Lemma 3.9
for $*=r$
- use $\otimes_{\text {min }}$
- use same isomorphism of $*$-algebras as above
- apply Lemma 3.9
$-\phi: A \rightarrow B(H)$ injective to define $\psi: A \rtimes_{r} G \rightarrow B\left(L^{2}(G, H)\right)$
- use $\psi: C_{r}(G, A) \rightarrow B\left(L^{2}(H)\right)$ and $K(V) \rightarrow B(V)$ to define minimal tensor product
$-\phi \otimes \mathrm{id}: A \otimes \operatorname{Res}_{1}^{G}(K(V)) \rightarrow B(H \otimes V)$
- use this to define $\left(A \otimes \operatorname{Res}_{1}^{G}(K(V))\right) \rtimes_{r} G$ via rep on $L^{2}(G, H \otimes V)$
- use $L^{2}(G, H \otimes V) \cong L^{2}(G, H) \otimes V$
- conclude isomorphism above is isometric

Example 3.30. Assume: $\sigma: G \rightarrow U(M(B))$ representation
$-\beta_{g}:=\sigma_{g}-\sigma_{g^{-1}}$

- makes $B \in G C^{*} \mathbf{A l g}^{\mathrm{nu}}$

Lemma 3.31. For A in $C^{*} \operatorname{Alg}^{\mathrm{nu}}$ and $(?,!) \in\{(-, \max),(r, \min)\}$ we have an isomorphism $(B \otimes!A) \rtimes_{?} G \cong \operatorname{Res}^{G}(B) \otimes_{!}\left(A \rtimes_{?} G\right)$

Proof. $C_{c}(G, A) \otimes B \rightarrow C_{c}(G, A \otimes B)$

- $f \otimes b \mapsto\left(g \mapsto\left(\mathrm{id}_{A} \otimes \sigma_{g^{-1}}\right)(f \otimes b)\right)$
- induces isomorphism

Lemma 3.32. The functor $-\rtimes_{\text {? }} G: G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ descends to a functor $-\rtimes_{?} G: L_{K_{G}} G C^{*} \mathrm{Alg}_{h}^{\mathrm{nu}} \rightarrow L_{K} C^{*} \mathrm{Alg}_{h}^{\mathrm{nu}}$.

Proof. abbreviate $F:=L_{K} \circ\left(-\rtimes_{?} G\right): G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow L_{K} C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$

- consider isometric embedding of separable G-Hiilbert spaces $V \rightarrow V^{\prime}$
- must show $F(A \otimes K(V)) \rightarrow F\left(A \otimes K\left(V^{\prime}\right)\right)$ is an equivalence
use Lemma 3.29
- $F(A \otimes K(V)) \rightarrow F(A) \otimes \operatorname{Res}_{1}^{G}(K(V))$ is equivalent to
$-F(A) \otimes \operatorname{Res}_{1}^{G}(K(V)) \rightarrow F(A) \otimes \operatorname{Res}_{1}^{G}\left(K\left(V^{\prime}\right)\right)$
- this is equivalence by stability

Lemma 3.33. If H is closed in G and G / H is compact, then we have an adjunction

$$
\operatorname{Res}_{H}^{G}: L_{K_{G}} G C^{*} \mathbf{A l g}^{\mathrm{nu}} \leftrightarrows L_{K_{H}} H C^{*} \mathbf{A l g}^{\mathrm{nu}}: \operatorname{Coind}_{H}^{G}
$$

Proof. adjunctions descend if functors do
Lemma 3.34. If H is open in G, then we have an adjunction

$$
\operatorname{Ind}_{H}^{G}: L_{K_{H}} H C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \leftrightarrows L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}: \operatorname{Res}_{H}^{G}
$$

Proof.
start with description of unit and counit
$\epsilon: \mathrm{id} \rightarrow \operatorname{Res}_{H}^{G} \circ \operatorname{Ind}_{H}^{G}$
$-\epsilon_{A}: A \rightarrow \operatorname{Res}_{H}^{G} \circ \operatorname{Ind}_{H}^{G}(A)$
$-\epsilon_{A}(a)=\chi_{H}(g) \alpha_{g^{-1}} a=\left\{\begin{array}{cc}\alpha_{g^{-1}} a & g \in H \\ 0 & \text { else }\end{array}\right.$
$-\eta: \operatorname{Ind}_{H}^{G} \circ \operatorname{Res}_{H}^{G} \rightarrow \mathrm{id}$

- $\eta_{B}: \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right) \rightarrow B$
$-\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right) \subseteq C_{b}(G, B)^{H}$
- invariance condition $f(g h)=\beta_{h^{-1}} f(g)$
- G-action by $\left(g^{\prime} \cdot f\right)(g)=f\left(g^{\prime,-1} g\right)$
$-C_{b}(G, B)^{H} \xrightarrow{\cong} C_{b}(G / H, B)$
$-f \mapsto\left(g H \mapsto \beta_{g} f(g)\right.$
- restricts to $\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right) \cong C_{0}(G / H, B) \cong C_{0}(G / H) \otimes B$
- G-action diagonally
$-C_{0}(G / H) \otimes B \rightarrow K\left(L^{2}(G / H)\right) \otimes B$
- functions act by multiplication operator
- multiplication operators by C_{0}-functions are compact by discreteness of G / H
$-\eta_{B}: \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right) \cong C_{0}(G / H) \otimes B \rightarrow K\left(L^{2}(G / H)\right) \otimes B \simeq B$
check triangle equalities

$$
\operatorname{Res}_{H}^{G}(B) \xrightarrow{\operatorname{Reses}_{H}^{G}(B)} \operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right)\right) \xrightarrow{\operatorname{Res}\left(\eta_{B}\right)} \operatorname{Res}_{H}^{G}(B)
$$

$$
\begin{aligned}
b & \mapsto\left(g \mapsto \chi_{H}(g) \beta_{g^{-1}} b\right) \\
& \mapsto\left(g \mapsto \chi_{H}(g) \beta_{g} \beta_{g^{-1}} b\right) \\
& =\left(g \mapsto \chi_{H}(g) b\right) \\
& \mapsto \chi_{H} \otimes b \in \operatorname{Res}_{H}^{G}\left(K\left(L^{2}(G / H)\right) \otimes B\right) \\
& \simeq b \in \operatorname{Res}_{H}^{G}(B)
\end{aligned}
$$

- the last map is left upper corner inclusion
- it follows that $\operatorname{Res}_{H}^{G}\left(\eta_{B}\right) \circ \epsilon_{\operatorname{Res}_{H}^{G}(B)} \simeq \operatorname{id}_{\operatorname{Res}_{H}^{G}(B)}$
$\operatorname{Ind}_{H}^{G}(A) \xrightarrow{\operatorname{Ind}_{H}^{G}\left(\epsilon_{A}\right)} \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{H}^{G}(A)\right)\right) \xrightarrow{\eta_{\text {Ind }^{G}(A)}^{(A)}} \operatorname{Ind}_{H}^{G}(A)$

$$
\begin{aligned}
\left((g \mapsto f(g)) \in \operatorname{Ind}_{H}^{G}(A)\right) & \mapsto\left(g \mapsto\left(l \mapsto \chi_{H}(l) \alpha_{l^{-1}} f(g)\right)\right) \in \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}\left(\operatorname{Ind}_{H}^{G}(A)\right)\right) \\
& \mapsto\left(g \mapsto\left(l \mapsto \chi_{H}\left(g^{-1} l\right) \alpha_{\left(g^{-1} l\right)^{-1}} f(g)\right)\right) \in C_{0}(G / H) \otimes \operatorname{Ind}_{H}^{G}(A) \\
& =\left(g \mapsto\left(l \mapsto \chi_{H}\left(g^{-1} l\right) f(l)\right)\right) \in C_{0}(G / H) \otimes \operatorname{Ind}_{H}^{G}(A) \\
& =\sum_{k \in G / H} \chi_{k H} \otimes \chi_{k H} f \in K\left(L^{2}(G / H)\right) \otimes \operatorname{Ind}_{H}^{G}(A)
\end{aligned}
$$

must still compose with

$$
K\left(L^{2}(G / H)\right) \otimes \operatorname{Ind}_{H}^{G}(A) \stackrel{\widetilde{\rightarrow}}{ } K\left(\mathbb{C} \oplus L^{2}(G / H)\right) \otimes \operatorname{Ind}_{H}^{G}(A) \widetilde{\sim} \operatorname{Ind}_{H}^{G}(A)
$$

- denote embedding $i: K\left(L^{2}(G / H)\right) \rightarrow K\left(\mathbb{C} \oplus L^{2}(G / H)\right)$
- p in $K\left(\mathbb{C} \oplus L^{2}(G / H)\right.$ projection onto summand \mathbb{C}
- $i\left(\chi_{k H}\right) \in K\left(\mathbb{C} \oplus L^{2}(G / H)\right)$ - one-dimensional projection
- choose $u \in K\left(\mathbb{C} \oplus L^{2}(G / H)\right)$ one-dimensional partial isometry such that $u p u^{*}=i\left(\chi_{H}\right)$
- define $u_{k}:=k u$ for all k in G / H
$-u_{k} p u_{k}^{*}=i\left(\chi_{k H}\right)$
- family of g-equivariant homomorphisms $A \mapsto K\left(L^{2}(G / H)\right) \otimes \operatorname{Ind}_{H}^{G}(A)$

$$
\left.f \mapsto \sum_{k \in G / H}\left(\cos \left(\frac{\pi}{2} t\right)^{2} i\left(\chi_{k H}\right)+\sin \left(\frac{\pi}{2} t\right)^{2} p+\cos \left(\frac{\pi}{2} t\right)\right) \sin \left(\frac{\pi}{2} t\right)\left(u_{k}+u_{k}^{*}\right)\right) \otimes \chi_{k H} f
$$

$-t=0$: get $\sum_{k \in G / H} \chi_{k H} \otimes \chi_{k H} f$
$-t=1$: get $f \mapsto p \otimes f$
conclude:

$$
\eta_{\operatorname{Ind}_{H}^{G}(A)} \circ \operatorname{Ind}_{H}^{G}\left(\epsilon_{A}\right) \simeq \operatorname{id}_{\operatorname{Ind}_{H}^{G}(A)}
$$

note: this argument needs homotopy and stabilization

3.2.3 Murray von Neumann equivalence and weakly equivariant maps, Thomsen stability

$f: A \rightarrow B$ - a morphism in $C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- consider v in $M(B)$
- assume: u is partial isometry
$-f(-) v v^{*}=f(-)$
- then get new homomorphism $v^{*} f(-) v: A \rightarrow B$
- call this the conjugated homomorphism
$f, g: A \rightarrow B$
Definition 3.35. We say that f and g are Murray-von Neumann (MvN) equivalent if there exists a partial isometry v in $M(B)$ such that $f v v^{*}=f$ and $v^{*} f(-) v=g(-): A \rightarrow B$.

Lemma 3.36. If f and g are $M v N$-equivalent, then we have an equivalence

$$
L_{h, K}(f) \simeq L_{h, K}(g)
$$

Proof.
$B \xrightarrow{b \mapsto(b, 0)} \operatorname{Mat}_{2}(B)$ is equivalence in $L_{K} C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$

- consider compositions:
$-f \oplus 0: A \xrightarrow{f} B \xrightarrow{b \mapsto(b, 0)} \operatorname{Mat}_{2}(B)$
$-g \oplus 0: A \xrightarrow{g} B \xrightarrow{b \mapsto(b, 0)} \operatorname{Mat}_{2}(B)$
- suffices to show $f \oplus 0 \simeq g \oplus 0$
consider $u:=\left(\begin{array}{cc}v & 1-v v^{*} \\ v^{*} v-1 & v^{*}\end{array}\right){\text { in } \operatorname{Mat}_{2}(M(B)), ~(1)}^{(M)}$
- is unitary
- $u^{*}(f \oplus 0) u=(g \oplus 0)$
- i is homotopic to $1_{\text {Mat }_{2}(M(B))}$
- here is a homotopy
$-\left(\begin{array}{cc}\cos \left(\frac{\pi}{2} t\right) v & 1-\left(1-\sin \left(\frac{\pi}{2} t\right)\right) v v^{*} \\ \left(1-\sin \left(\frac{\pi}{2} t\right)\right) v^{*} v-1 & \cos \left(\frac{\pi}{2} t\right) v^{*}\end{array}\right)$ is homotopy from u to $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
- this can further be connected with $1_{\operatorname{Mat}_{2}(M(B))}$
$(A, \alpha),(B, \beta)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- usually write A, B
$f: A \rightarrow B$ morphism in $C^{*} \mathbf{A l g}^{\mathrm{nu}}$
$-g \cdot f:=\beta_{g} \circ f \circ \alpha_{g^{-1}}$
- conjugation action on $\operatorname{Hom}_{C^{*}} \mathbf{A l g}^{\text {gux }}(A, B)$
$f: A \rightarrow B$ morphism in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- means f is equivariant $g \cdot f=f$

Definition 3.37. A cocycle on B is a continuous map $G \rightarrow U(M(B)$) (strict topology on the target) such that $\beta_{h}\left(\sigma_{g}\right) \sigma_{h}=\sigma_{h g}$ for all h, g in G.

$$
\begin{aligned}
(h g) \cdot f & =\sigma_{h g} f \sigma_{h g}^{*} \\
h \cdot(g \cdot f)) & =h \cdot\left(\sigma_{g} f \sigma_{g}^{*}\right) \\
& =\beta_{h}\left(\sigma_{g}\right) \sigma_{h} f \sigma_{h}^{*} \beta_{h}\left(\sigma_{g}^{*}\right)
\end{aligned}
$$

if $\beta=\mathrm{id}$, then σ is an action of G^{op}

Definition 3.38. A cocycle σ on B extends f to a weakly equivariant map if $g \cdot f(-)=$ $\sigma_{g} f(-) \sigma_{g}^{*}$ for all g in G.
$(A, \alpha),(B, \beta)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- $f: A \rightarrow B$ equivariant
- v isometry in $M(B)$
$-v^{*} v=1_{M(B)}$
$-p:=v v^{*}$
$-\beta_{g}(p)=p$ for all g in G
- $f p=f$

Lemma 3.39. $v^{*} f(-) v$ extends to a weakly equivariant map with cocycle

$$
\begin{equation*}
g \mapsto \sigma_{g}:=\beta_{g}\left(v^{*}\right) v . \tag{3.1}
\end{equation*}
$$

Proof.
unitaryness
$-\sigma_{g}^{*} \sigma_{g}=v^{*} \beta_{g}(v) \beta_{g}\left(v^{*}\right) v=v^{*} \beta_{g}(p) v=v^{*} p v=1_{M(B)}$

- cocycle
$-\beta_{h}\left(\beta_{g}\left(v^{*}\right) v\right) \beta_{h}\left(v^{*}\right) v=\beta_{h g}\left(v^{*}\right) p v=\beta_{h g}\left(v^{*}\right) v$
$\left(v^{*} f(-) v, \sigma\right)$ is weakly equivariant morphism
$\left.-\beta_{g}\left(v^{*} f\left(\alpha_{g^{-1}} a\right) v\right)=\beta_{g}\left(v^{*} \beta_{g^{-1}}(f(a)) v\right)=\beta_{g}\left(v^{*}\right) v v^{*} f(a) v v^{*} \beta_{g}(v)\right)=\sigma_{g} v^{*} f(a) v \sigma_{g^{*}}$

Lemma 3.40. A weakly equivariant $\operatorname{map}(f, \sigma): A \rightarrow B$ functorially induces an equivariant homomorphism $A \otimes K_{G} \rightarrow B \otimes K_{G}$.
functorial means: as long as composition is defined

Proof.
suffices to construct morphisms $A \otimes K\left(L^{2}(G)\right) \rightarrow B \otimes K\left(L^{2}(G)\right)$

- identify $B \otimes K\left(L^{2}(G)\right)$ with B-valued convolution kernels $b\left(g, g^{\prime}\right)$ on G
- $\left(b b^{\prime}\right)\left(g, g^{\prime \prime}\right)=\int_{G} b\left(g, g^{\prime}\right) b^{\prime}\left(g^{\prime}, g^{\prime \prime}\right) \mu\left(g^{\prime}\right)$
- G-action: $\left(h b\left(g, g^{\prime}\right)=\beta_{h} b\left(h^{-1} g, h^{-1} g^{\prime}\right)\right.$
similarly with $A \otimes K\left(L^{2}(G)\right)$
define map $A \otimes K\left(L^{2}(G)\right) \rightarrow B \otimes K\left(L^{2}(G)\right)$ by
$-a\left(g, g^{\prime}\right) \mapsto \sigma_{g} f\left(a\left(g, g^{\prime}\right)\right) \sigma_{g^{\prime}}^{*}$
- is homomorphism
- $\alpha_{h}\left(a\left(h^{-1} g, h^{-1} g^{\prime}\right)\right)$ goes to $\sigma_{g} f\left(\alpha_{h^{-1}}\left(a\left(h^{-1} g, h^{-1} g^{\prime}\right)\right)\right) \sigma_{g^{\prime}}^{*}$

$$
\begin{aligned}
\sigma_{g} f\left(\alpha_{h}\left(a\left(h^{-1} g, h^{-1} g^{\prime}\right)\right)\right) \sigma_{g^{\prime}}^{*} & =\sigma_{g} \beta_{h}\left(\beta_{h^{-1}} f\left(\alpha_{h}\left(a\left(h^{-1} g, h^{-1} g^{\prime}\right)\right)\right)\right) \sigma_{g^{\prime}}^{*} \\
& =\sigma_{g} \beta_{h}\left(\sigma_{h^{-1}} f\left(a\left(h^{-1} g, h^{-1} g^{\prime}\right)\right) \sigma_{h^{-1}}^{*}\right) \sigma_{g^{\prime}}^{*} \\
& \left.=\beta_{h}\left(\sigma_{h^{-1} g} f\left(a\left(h^{-1} g, h^{-1} g^{\prime}\right)\right) \sigma_{h^{-1} g}^{*}\right)\right)
\end{aligned}
$$

- conclude: $A \otimes K\left(L^{2}(G)\right) \rightarrow B \otimes K\left(L^{2}(G)\right)$ is equivariant homomorphism
this is compatible with the partially defined composition
in order to see that we land in $B \otimes K\left(L^{2}(G)\right)$
- consider image of kernels $a \otimes \chi_{K}(g) \chi_{K^{\prime}}\left(g^{\prime}\right)$
- K compact in G
- goes to $\left(g, g^{\prime}\right) \mapsto \sigma_{g} a \sigma_{g^{\prime}}^{*} \chi_{K}(g) \chi_{K^{\prime}}\left(g^{\prime}\right) \in B$
- approximate $\sigma_{g} a \sigma_{g^{\prime}}^{*}$ on K uniformly by locally constant functions
- the resulting kernel is obviously in $B \otimes K\left(L^{2}(G)\right)$
$(A, \alpha),\left(A, \alpha^{\prime}\right)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
Definition 3.41. We say that A and A^{\prime} are exterior equivalent if id_{A} extends to a weakly equivariant map.

Corollary 3.42. If A ane A^{\prime} are exterior equivalent, then we have an equivalence $L_{h, K_{G}}(A) \simeq L_{h, K_{G}}\left(A^{\prime}\right)$ in $L_{K_{G}} C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$
note: the equivalence in the corollary above might depend on the choice of the cocycle extending id A
consider $A=(A, \alpha)$

- consider G-action $\tilde{\alpha}$ on $A \otimes K$

Definition 3.43 (Thomsen). We say that $\tilde{\alpha}$ is compatible with α if there exists an equivariant map $A \rightarrow A \otimes K, a \mapsto a \otimes e$, for a minimal projection e.

Proposition 3.44. If $\tilde{\alpha}$ is compatible with α, then $\tilde{\alpha}$ is exterior equivalent to $\alpha \otimes \operatorname{id}_{K}$ by a cocycle σ with $\sigma_{g}\left(\alpha_{g} \otimes \mathrm{id}\right) \sigma_{g}^{*}=\tilde{\alpha}_{g}$ and $\sigma_{g}(a \otimes e) \sigma_{g}^{*}=a \otimes e$ for all a in A.

Proof.
define $\sigma_{g}:=\sum_{i} \tilde{\alpha}_{g}\left(1 \otimes e_{i, 1}\right)\left(1 \otimes e_{1, i}\right)$

$$
\begin{aligned}
\sigma_{g}^{*} \sigma_{g} & =\sum_{j}\left(1 \otimes e_{j, 1}\right) \tilde{\alpha}_{g}\left(1 \otimes e_{1, j}\right) \sum_{i} \tilde{\alpha}_{g}\left(1 \otimes e_{i, 1}\right)\left(1 \otimes e_{1, i}\right) \\
& =\sum_{j}\left(1 \otimes e_{j, 1}\right) \tilde{\alpha}_{g}\left(1 \otimes e_{1,1}\right)\left(1 \otimes e_{1, j}\right) \\
& =\sum_{j}\left(1 \otimes e_{j, 1}\right)\left(1 \otimes e_{1,1}\right)\left(1 \otimes e_{1, j}\right) \\
& =1
\end{aligned}
$$

- $\sigma_{h g}=\sum_{i} \tilde{\alpha}_{h g}\left(1 \otimes e_{i, 1}\right)\left(1 \otimes e_{1, i}\right)$

$$
\begin{aligned}
\tilde{\alpha}_{h}\left(\sigma_{g}\right) \sigma_{h} & =\tilde{\alpha}_{h}\left(\sum_{i} \tilde{\alpha}_{g}\left(1 \otimes e_{i, 1}\right)\left(1 \otimes e_{1, i}\right)\right) \sum_{j} \tilde{\alpha}_{h}\left(1 \otimes e_{j, 1}\right)\left(1 \otimes e_{1, j}\right) \\
& \left.=\sum_{i} \tilde{\alpha}_{h g}\left(1 \otimes e_{i, 1}\right) \tilde{\alpha}\left(1 \otimes e_{1,1}\right)\right)\left(1 \otimes e_{1, i}\right) \\
& =\sum_{i} \tilde{\alpha}_{h g}\left(1 \otimes e_{i, 1}\right) \tilde{\alpha}\left(1 \otimes e_{1, i}\right)
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{g}\left(\alpha_{g}(a) \otimes e_{k l}\right) \sigma_{g}^{*} & =\sum_{i} \tilde{\alpha}_{g}\left(1 \otimes e_{i, 1}\right)\left(1 \otimes e_{1, i}\right)\left(\alpha_{g}(a) \otimes e_{k l}\right) \sum_{j}\left(1 \otimes e_{j, 1}\right) \tilde{\alpha}_{g}\left(1 \otimes e_{1, j}\right) \\
& =\tilde{\alpha}_{g}\left(1 \otimes e_{k, 1}\right)\left(1 \otimes e_{1, k}\right)\left(\alpha_{g}(a) \otimes e_{k l}\right)\left(1 \otimes e_{l, 1}\right) \tilde{\alpha}_{g}\left(1 \otimes e_{1, l}\right) \\
& =\tilde{\alpha}_{g}\left(1 \otimes e_{k, 1}\right)\left(\alpha _ { g } (a) \otimes e _ { 1 1 } \tilde { \alpha } _ { g } \left(1 \otimes e_{1, l}\right.\right. \\
& =\tilde{\alpha}_{g}\left(1 \otimes e_{k, 1}\right) \tilde{\alpha}_{g}\left(a \otimes e_{11}\right) \tilde{\alpha}_{g}\left(1 \otimes e_{1, l}\right) \\
& =\tilde{\alpha}_{g}\left(a \otimes e_{k, l}\right)
\end{aligned}
$$

Corollary 3.45. If $\tilde{\alpha}$ is compatible with α, then the $\operatorname{map}(A, \alpha) \rightarrow(A \otimes K, \tilde{\alpha})$ is a K_{G}-equivalence.

Proof.

$$
A \otimes K_{G} \xrightarrow{(a \mapsto a \otimes e) \otimes \mathrm{id}_{K_{G}}}\left(A \otimes K \otimes K_{G}, \tilde{\alpha} \otimes \ell\right) \cong\left(A \otimes K \otimes K_{G}, \alpha \otimes \mathrm{id}_{K} \otimes \ell\right)
$$

- second isomorphism induced by exterior equivalence $(A \otimes K, \tilde{\alpha}) \rightarrow\left(A \otimes K, \alpha \otimes \mathrm{id}_{K}\right)$ obtained from Proposition 3.44
- this equivalence preserves $a \otimes e$
- whole composition is left upper corner inclusion tensored with K_{G}
- hence a homotopy equivalence by stability of K_{G}
conclude: first map is homotopy equivalence
$F: C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow \mathbf{M}$
- F homotopy invariant

Definition 3.46 (Thomsen Tho98). F is called Thomsen stable if it sends $F(A, \alpha) \rightarrow$ $F(A \otimes K, \tilde{\alpha})$ to equivalences provided α and $\tilde{\alpha}$ are compatible

Lemma 3.47. G-stability is equivalent to Thomsen stability.

Proof.

- by Corollary 3.45; a G-stable functor is stable in the sense of Thomsen
show: stable functor in the sense of Thomsen is K_{G}-stable
$-A \rightarrow A \otimes \hat{K}_{G}$ is Thomsen equivalence
$-A \otimes K_{G} \rightarrow A \otimes \hat{K}_{G}$ is Thomsen equivalence
$\hat{K}_{G} \cong\left(\begin{array}{cc}K_{G} & K\left(\ell^{2}, L^{2}(G) \otimes \ell^{2}\right) \\ K\left(L^{2}(G) \otimes \ell^{2}, \ell^{2}\right) & K\left(\ell^{2}, \ell^{2}\right)\end{array}\right) \cong\left(\begin{array}{cc}K_{G} \otimes e & e K_{G} \otimes K e^{\perp} \\ e^{\perp} K e & e^{\perp} K_{G} \otimes K e^{\perp}\end{array}\right) \cong K_{G} \otimes K$
- e - one-dimensional in K
- some action preserving this structure
- use here some identification $K_{G} \otimes K$ with K (no action)
- write $A \otimes K_{G}=\left(A^{\prime}, \alpha^{\prime}\right)$
$-A \otimes \hat{K}_{G}=\left(A^{\prime} \otimes K, \tilde{\alpha}^{\prime}\right)$
- get Thomsen equivalence
$f: A \rightarrow B-K_{G}$-equivalence
- use diagram

- F sends horizontal arrows to equivalences since they are Thomsen equivalences
- F sends right vertical map to equivalence since it is homotopy equivalence
- hence: F sends left vertical map to equivalence
consider (A, α) in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- p in $M(A)^{G}$ - invariant projection
- $(B, p \alpha p)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- $i: B \rightarrow A$ invariant inclusion

Definition 3.48. B is called a corner of A.
Definition 3.49. It is called full if $A p A=A$.

Recall: A separable implies A has strictly positive element
Proposition 3.50. If A admits a strictly positive element, then there exists a weakly equivariant isomorphism $v: B \otimes K \rightarrow A \otimes K$. Furthermore $L_{h, K_{G}}(v) \simeq L_{h, K_{G}}(i)$.

Proof.
apply Bro77, Cor. 2.6]
$-(B \otimes K)=(p \otimes 1) A \otimes K)(p \otimes 1)$

- find isometry v in $M(A \otimes K)$ with $v^{*} v=p \otimes 1$
$-v^{*}-v: B \otimes K \stackrel{\cong}{\rightrightarrows} A \otimes K$
apply Lemma 3.39
- get canonical extension by cocycle to weakly equivariant map
i and v are Murray von Neumann equivalent
- $i \oplus 0$ and $v \oplus 0$ are conjugate by unitary u
- u is homotopic to 1
- can extend whole homotopy from $i \oplus 0$ to $v \oplus 0$ to homotopy of weakly equivariant maps (use explicit formula for cocycle (3.1))
- get homotopy of equivariant maps $\operatorname{Mat}_{2}(A) \otimes K_{G} \rightarrow \operatorname{Mat}_{2}(B) \otimes K_{G}$

Corollary 3.51. If A is separable, then a full corner inclusion $B \rightarrow A$ induces an equivalence $L_{h, K_{G}}(B) \rightarrow L_{h, K_{G}}(A)$.

3.2.4 Hilbert C^{*}-modules and bimodules

$B-C^{*}$-algebra

- E - \mathbb{C} - vector space
- consider the following additional structures:
- B-right module structure
$-B$-valued scalar product: $\langle-,-\rangle: E \otimes_{\mathbb{C}} E \rightarrow B$
$-\left\langle b e, e^{\prime} b^{\prime}\right\rangle=b^{*}\left\langle e, e^{\prime}\right\rangle b^{\prime}$ for all b, b^{\prime} in B, e, e^{\prime} in E
$-\left\langle e, e^{\prime}\right\rangle=\left\langle e^{\prime}, e\right\rangle^{*}$
$-\langle e, e\rangle \geq 0$
- define seminorm: $\|e\|:=\|\langle e, e\rangle\|^{1 / 2}$
- check: semi-norm properties (exercise)
- so far: $(E,\langle-,-\rangle)$ - a pre Hilbert B-module

Definition 3.52. $(E,\langle-,-\rangle)$ is a Hilbert B-module if $(B,\|-\|)$ is a Banach space.
set $I:=\overline{\langle E, E\rangle}$

- is ideal in B

Lemma 3.53. $E I \subseteq E$ is dense

Proof. $\langle e-e i, e-e i\rangle=\langle e, e\rangle-\langle e, e\rangle i-i^{*}\langle e, e\rangle+i^{*}\langle e, e\rangle i$

- can make this as small as we want
- take i in approximate unit of I
$A: E \rightarrow E$ a map
Definition 3.54. A is adjointable if there exists $A^{*}: E \rightarrow E$ such that $\left\langle A e, e^{\prime}\right\rangle=\left\langle e, A^{*} e\right\rangle$ for all e, e^{\prime} in E

Lemma 3.55. If A is adjointable, then A is linear, B-linear and bounded (in the sense of Banach spaces) and A^{*} is uniquely determined by A.

Proof. uniqueness: exercise

- linearity: exercise
- boundedness: use closed graph theorem
$B(E)$ - adjointable operators on E
Lemma 3.56. $B(E)$ is a C^{*}-algebra.

Proof. $B(E)$ is closed in bounded operators on E

- * is involutive, isometric
- $\left\|A^{*} A\right\|=\|A\|^{2}$
- Chauchy-Schwarz: $\|\langle e, f\rangle\|^{2} \leq\|e\|^{2}\|f\|^{2}$ (exercise)
- implies $\|\langle A e, A e\rangle\|^{2} \leq\left\|A^{*} A\right\|^{2} \leq\|A\|^{4}$ for unit vectors e
- $\|A\|^{2} \leq\left\|A^{*} A\right\| \leq\|A\|^{2}$ - hence equality
consider e, e^{\prime} in E
- define \mathbb{C}-linear map $\Theta_{e, e^{\prime}}: E \rightarrow E$
$-\Theta_{e, e^{\prime}}\left(e^{\prime \prime}\right):=e\left\langle e^{\prime}, e^{\prime \prime}\right\rangle$
- is B linear: $\Theta_{e, e^{\prime}}\left(e^{\prime \prime} b\right)=e\left\langle e^{\prime}, e^{\prime \prime} b\right\rangle=e\left\langle e^{\prime}, e^{\prime \prime}\right\rangle b=\Theta_{e, e^{\prime}}\left(e^{\prime \prime}\right) b$
- is adjointable:

$$
\begin{aligned}
\left\langle\Theta_{e, e^{\prime}}\left(e^{\prime \prime}\right), e^{\prime \prime \prime}\right\rangle & =\left\langle e\left\langle e^{\prime}, e^{\prime \prime}\right\rangle, e^{\prime \prime \prime}\right\rangle \\
& =\left\langle e^{\prime}, e^{\prime \prime \prime}\right\rangle^{*}\left\langle e, e^{\prime \prime \prime}\right\rangle \\
& =\left\langle e^{\prime \prime}, e^{\prime}\right\rangle\left\langle e, e^{\prime \prime \prime}\right\rangle \\
& =\left\langle e^{\prime \prime}, e^{\prime}\left\langle e, e^{\prime \prime \prime}\right\rangle\right\rangle \\
& =\left\langle e^{\prime \prime}, \Theta_{e^{\prime}, e}\left(e^{\prime \prime \prime}\right)\right\rangle
\end{aligned}
$$

$\Theta_{e, e^{\prime}}$ is called elementary compact
Definition 3.57. We define $K(E)$ as the C^{*}-subalgebra of $B(E)$ generated by the elementary compact operators.

Lemma 3.58. $K(E)$ is an ideal in $B(E)$ and $B(E) \cong M(K(E))$.

Proof. ideal: exercise
multiplier: see [Bla98, 13.4.1]
Example 3.59. Example: $B=\mathbb{C}$

- Hilbert \mathbb{C}-modules are Hilbert spaces, $B(E)$ and $K(E)$ have the usual meaning
-note: the elements of $K(E)$ are in general not compact in the sense of bounded operators on a Banach space

Example 3.60. B is Hilbert B-module
$-\left\langle b, b^{\prime}\right\rangle:=b^{*} b^{\prime}$

- $B(B)=M(B)$ and $K(B)=B$
can form orthogonal sum of Hilbert B-modules
$B^{n}:=\bigoplus_{i=1}^{n} B$ as Hilbert B-modules
$K\left(B^{n}\right) \cong \operatorname{Mat}_{n}(B)$
$B\left(B^{n}\right) \cong \operatorname{Mat}_{n}(M(B))$
Example 3.61. can for direct sum of Hilbert B-modules
$E \oplus F$
- scalar product $\left\langle e \oplus f, e^{\prime} \oplus f^{\prime}\right\rangle:=\left\langle e, e^{\prime}\right\rangle+\left\langle f, f^{\prime}\right\rangle$

Example 3.62. have maps $B^{n} \rightarrow B^{n+1}$

- form $H_{B}^{\circ}:=\operatorname{colim}_{n \in \mathbb{N}} B^{n}$ in right B-modules
- get scalar product
- $H_{B}:=$ completion of H_{B}°
elements: $\left(b_{i}\right)_{i \in \mathbb{N}}$ with $\sum_{i \in \mathbb{N}} b_{i}^{*} b_{i}$ converges in B
- norm: $\left\|\left(b_{i}\right)_{i \in \mathbb{N}}\right\|^{2}=\left\|\sum_{i \in \mathbb{N}} b_{i}^{*} b_{i}\right\|$
note: $\left\|\sum_{i \in \mathbb{N}} b_{i}^{*} b_{i}\right\| \leq\left\|\sum_{i \in \mathbb{N}}\right\| b_{i} \|^{2}$ but in general not equal
Example 3.63. X-locally compact space
(V, h) - euclidean vector bundle
$\Gamma_{0}(X, V)$ is right $C_{0}(X)$-module
- $\left\langle v, v^{\prime}\right\rangle(x):=h\left(v(x), v^{\prime}(x)\right)$ is scalar product
- $B\left(\Gamma_{0}(X, V)\right)=\Gamma_{b}(X, \operatorname{End}(V))$
- $K\left(\Gamma_{0}(X, V)\right)=\Gamma_{0}(X, \operatorname{End}(V))$
- id_{V} is compact if and only if X is compact

Example 3.64. can talk about adjointable operators $A: E \rightarrow E^{\prime}$

- equivalently: $\left(\begin{array}{cc}0 & 0 \\ A & 0\end{array}\right): E \oplus E^{\prime} \rightarrow E \oplus E^{\prime}$ is adjointable
here is an example of a non-adjointable bounded B-linear map
$B:=B\left(\ell^{2}\right)$ is B-Hilbert C^{*}-module
- $K:=K\left(\ell^{2}\right)$ is submodule
- $A: K \rightarrow B$ is isometric inclusion of right B-modules

Claim: A is not adjointable.
everything has an equivariant version
G - action on E

- $\sigma: G \rightarrow U(B(E))$ homomorphism
- strongly continuous: $g \mapsto \sigma_{g}(e)$ continuous

Lemma 3.65. The action $G \rightarrow \operatorname{Aut}(K(E))$ (by conjugation) is continuous.

Proof. Exercise!

Definition 3.66. A Hilbert-B-module is called full, if $\langle E, E\rangle$ is dense in B.
Example 3.67. E - equivariant Hilbert B-module

- I - ideal in B generated by $\langle E, E\rangle$
- is invariant
E is full equivariant I Hilbert B-module
Lemma 3.68. $B(E) \cong B\left(E_{\mid I}\right)$

Proof. (u_{i}) approximate unit of I

- A in $B\left(E_{\mid I}\right)$
- for all e, e^{\prime} in E, b in B

$$
\begin{aligned}
\left\langle e, A\left(e^{\prime} b\right)-A\left(e^{\prime}\right) b\right\rangle & =\lim _{i}\left\langle e, A\left(e^{\prime} b\right)-A\left(e^{\prime}\right) b\right\rangle u_{i} \\
& =\lim _{i}\left\langle e, A\left(e^{\prime} b u_{i}\right)-A\left(e^{\prime}\right) b u_{i}\right\rangle \\
& =0
\end{aligned}
$$

- shows: $A\left(e^{\prime} b\right)=A\left(e^{\prime}\right) b$

Example 3.69. can consider left Hilbert A-modules in analogy

- start with Hilbert B-module E
- is left $K(E)$-module
- define $K(E)$-valued scalar product $\left(e, e^{\prime}\right):=\Theta_{e, e^{\prime}}$:
- check $\left(\Theta_{e^{\prime \prime \prime}, e^{\prime \prime}} e, e^{\prime}\right)=\Theta_{e^{\prime \prime \prime}\left\langle\left\langle e^{\prime \prime}, e\right\rangle, e^{\prime}\right.}=\Theta_{e^{\prime \prime \prime}, e^{\prime \prime}} \Theta_{e, e^{\prime}}=\Theta_{e^{\prime \prime \prime}, e^{\prime \prime}}\left(e, e^{\prime}\right)$
$-(e, e)=\Theta_{e, e}$ is positive (exercise ?)
- show $\left\|\theta_{e, e}-t\right\| \leq t$
$-\|(e, e)\|=\left\|\Theta_{e, e}\right\|=\|e\|^{2}$ (exercise ?)
conclude: E is left Hilbert $K(E)$-module
- compatible scalar products:

$$
\left(e, e^{\prime}\right) e^{\prime \prime}=\Theta_{e, e^{\prime}}\left(e^{\prime \prime}\right)=e\left\langle e^{\prime}, e^{\prime \prime}\right\rangle
$$

- full by construction

Construction 3.70. follow BGR77]
$A, B-G$ - C^{*}-algebras

- X - (right) B-Hilbert module and (left) A-Hilbert module
- compatible scalar products $\left\langle x, x^{\prime}\right\rangle_{A} x^{\prime \prime}=x\left\langle x^{\prime}, x^{\prime \prime}\right\rangle_{B}$
- define X^{*} - (B, A) - bimodule
- underlying vector space same as X with conjugated complex structure:
- operations: $(x, a) \mapsto a^{*} x,(b, x) \mapsto x b^{*}$
- conjugated scalar product
- define linking algebra $C^{0}:=\left(\begin{array}{cc}A & X \\ X^{*} & B\end{array}\right)$ in $G C^{*} \mathbf{A l g}_{\text {sep }}^{\mathrm{nu}}$
- product: $\left(\begin{array}{ll}a & x \\ y & b\end{array}\right)\left(\begin{array}{cc}a^{\prime} & x^{\prime} \\ y^{\prime} & b^{\prime}\end{array}\right)=\left(\begin{array}{cc}a a^{\prime}+\left\langle x, y^{\prime}\right\rangle_{A} & a x^{\prime}+x b^{\prime} \\ y a^{\prime}+b y^{\prime} & b b^{\prime}+\left\langle y, x^{\prime}\right\rangle_{B}\end{array}\right)$

$$
\left.\begin{array}{l}
\left(\left(\begin{array}{ll}
a & x \\
y & b
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & x^{\prime} \\
y^{\prime} & b^{\prime}
\end{array}\right)\right)\left(\begin{array}{cc}
a^{\prime \prime} & x^{\prime \prime} \\
y^{\prime \prime} & b^{\prime \prime}
\end{array}\right) \\
=\left(\begin{array}{cc}
a a^{\prime}+\left\langle x, y^{\prime}\right\rangle_{A} & a x^{\prime}+x b^{\prime} \\
y a^{\prime}+b y^{\prime} & b b^{\prime}+\left\langle y, x^{\prime}\right\rangle_{B}
\end{array}\right)\left(\begin{array}{cc}
a^{\prime \prime} & x^{\prime \prime} \\
y^{\prime \prime} & b^{\prime \prime}
\end{array}\right) \\
=\left(\begin{array}{cc}
\left(a a^{\prime}+\left\langle x, y^{\prime}\right\rangle_{A}\right) a^{\prime \prime}+\left\langle a x^{\prime}+x b^{\prime}, y^{\prime \prime}\right\rangle_{A} & \left(a x^{\prime}+x b^{\prime}\right) b^{\prime \prime}+\left(a a^{\prime}+\left\langle x, y^{\prime}\right\rangle_{A}\right) y^{\prime \prime} \\
\left(y a^{\prime}+b y^{\prime}\right) a^{\prime \prime}+\left(b b^{\prime}+\left\langle y, x^{\prime}\right\rangle_{B}\right) y^{\prime \prime} & \left(b b^{\prime}+\left\langle y, x^{\prime}\right\rangle_{B}\right) b^{\prime \prime}+\left\langle y a^{\prime}+b y^{\prime}, x^{\prime \prime}\right\rangle_{B}
\end{array}\right) \\
\left(\begin{array}{ll}
a & x \\
y & b
\end{array}\right)\left(\left(\begin{array}{cc}
a^{\prime} & x^{\prime} \\
y^{\prime} & b^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a^{\prime \prime} & x^{\prime \prime} \\
y^{\prime \prime} & b^{\prime \prime}
\end{array}\right)\right.
\end{array}\right) .
$$

look at right upper corner: here need compatibility of scalar products for associativity involution:

$$
\left(\begin{array}{ll}
a & x \\
y & b
\end{array}\right)^{*}=\left(\begin{array}{cc}
a^{*} & y \\
x & b^{*}
\end{array}\right)
$$

- consider representation of C^{0} on $X \oplus B$ by matrix multiplication
- induces seminorm
- define C as closure
clear: $B \cong\left(\begin{array}{cc}0 & 0 \\ 0 & B\end{array}\right) \subseteq C$ as corner
full: $C\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) C=C$?
these are the elements of the form $\left(\begin{array}{cc}\left\langle x, y^{\prime \prime}\right\rangle_{A} & x b^{\prime \prime} \\ b y^{\prime \prime} & b\end{array}\right)$
- need: A-valued scalar product is full
- $X B \subseteq X$ is dense, Lemma 3.53
assume: A, B - separable, X separable
- then C separable
$-A \cong\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right) \rightarrow C$ is homomorphism (not necessarily injective)
Proposition 3.71. If X is a (A, B)-Hilbert bimodule such that

1. X is full as left A-Hilbert module
2. A, B, X are separable.

Then we get a morphism $L_{h, K_{G}}(A) \rightarrow L_{h, K_{G}}(C) \underset{\sim}{\check{\leftarrow}} L_{h, K_{G}}(B)$

Definition 3.72. An equivariant separable (A, B)-Hilbert bimodule is called an equivariant Morita bimodule if it is full as right B-module and as left A-module.

Corollary 3.73. An (A, B) - Morita bimodule induces an equivalence in $L_{h, K_{G}}(A) \simeq$ $L_{h, K_{G}}(B)$.
E - a separable right B-Hilbert module

- then it is also $(K(E), B)$-Hilbert bimodule
- is full as $K(E)$-module
- is full as a I-rightmodule for $I:=\overline{\langle E, E\rangle}$
- by Proposition 3.50

Proposition 3.74. If E is a separable (A, B)-Hilbert bimodule such that: $A \rightarrow K(E)$, then we get a morphism

$$
E_{*}: L_{h, K_{G}}(A) \rightarrow L_{h, K_{G}}(K(E)) \rightarrow L_{h, K_{G}}(X) \underset{\rightleftharpoons}{\check{\leftarrow}} L_{h, K_{G}}(I) \rightarrow L_{h, K_{G}}(B) .
$$

Construction 3.75.

E - (A, B) - Hilbert bi-module
F - ($B, C)$-Hilbert bimodule
define $E \otimes_{B} F$

- $E \otimes_{B}^{\text {alg }} F$ as vector space
- left action by $a: a(e \otimes f):=a e \otimes f$
- right action by $C:(e \otimes f) c:=e \otimes f c$
- C-valued scalar product $\left\langle e \otimes f, e^{\prime} \otimes f^{\prime}\right\rangle:=\left\langle f,\left\langle e, e^{\prime}\right\rangle f^{\prime}\right\rangle$
- form completion $E \otimes_{B} F$ with respect to induced semi-norm
- show: operations extend by continuity

Lemma 3.76. $K(E) \xrightarrow{k \mapsto k \otimes \mathrm{id}} K\left(E \otimes_{B} F\right)$

Proof. exercise*
$E-(A, B)$ - Hilbert bi-module
F - (B, C)-Hilbert bimodule
Lemma 3.77. We have $L(F) \circ L(E) \simeq L\left(F \otimes_{B} E\right): L_{h, K_{G}}(A) \rightarrow L_{h, K_{G}}(B)$.

Proof. need a good argument!
Example 3.78. in this example translate two-morphisms into homotopies
$\phi: A \rightarrow A^{\prime}, \psi: B \rightarrow B^{\prime}$ - algebra homomorphisms
$E: A \rightarrow A^{\prime}, E^{\prime}: B \rightarrow B^{\prime}$ - bi-modules

- can form new bimodules:
$-A \xrightarrow{\phi} A^{\prime} \xrightarrow{E^{\prime}} B^{\prime}$ - gives $E^{\prime} \circ \phi: A \rightarrow B^{\prime}$
$-A \xrightarrow{E} B \xrightarrow{\psi} B^{\prime}\left(\right.$ by $\left.E \otimes_{B} B^{\prime}\right)$ - gives $\psi \circ E: A \rightarrow B^{\prime}$

$-\Gamma: E \rightarrow E^{\prime}$ structure preserving iso in obvious sense
- induces homotopy $E \otimes_{B} B^{\prime} \rightarrow E^{\prime} \circ \phi$
- form mapping cone $C\left([0,1], E^{\prime}\right) \circ \phi \oplus_{0, \Gamma} \psi \circ E$
- is $\left(A, C\left([0,1], B^{\prime}\right)\right)$-bimodule
- evaluation at 0 is $\psi \circ E$
- evaluation at 1 is $E^{\prime} \circ \phi$

Example 3.79. $(A, \alpha),\left(A, \mathrm{id}_{A}\right)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- $\sigma: G \rightarrow U(M(A))$ homomorphism
- assume: $\left(\mathrm{id}_{A}, \sigma\right):(A, \alpha) \rightarrow\left(A, \mathrm{id}_{A}\right)$ weakly equivariant map
- consider vector space $\mathcal{A}:=A$ with:
- G-action: $a \mapsto \sigma_{g} a$
$-\mathcal{A}$ is right $(A, 1)$-Hilbert C^{*}-module
- action $a a^{\prime}$ is product in A
- scalar product $\langle a, a\rangle:=a^{*} a^{\prime}$
$-(A, \alpha) \rightarrow K(\mathcal{A})$ equivariant $a \mapsto\left(a^{\prime} \mapsto a a^{\prime}\right)$
- equivariance $\sigma_{g} a \sigma_{g^{-1}}=\alpha_{g}(a)$ by assumptions
- is isomorphism
\mathcal{A} is $(A, \alpha),(A, \mathrm{id})$-Morita bimodule
Lemma 3.80. $L(\mathcal{A}) \simeq L\left(\mathrm{id}_{A}, \sigma\right)$

3.2.5 Imprimitivity and some adjunctions

$H \subset G$ - closed subgroup

Theorem 3.81 (Green's imprimitivity theorem). For $? \in\{r,-\}$ there is an equivalence of functors

$$
-\rtimes_{?} H \rightarrow \operatorname{Ind}_{H}^{G}(-) \rtimes_{?} G
$$

from $L_{K_{H}} H C^{*} \mathbf{A l g}_{\text {sep }, h}^{\mathrm{nu}} \rightarrow L_{K} C^{*} \mathbf{A l g}_{\text {sep }, h}^{\mathrm{nu}}$.

Proof. A in $H C^{*} \mathbf{A l g}^{\text {nu }}$

- define Morita $\left(\operatorname{Ind}_{H}^{G}(A) \rtimes_{r} G, A \rtimes_{r} H\right)$-bimodule $X(A)$
- $X_{c}(A):=C_{c}(G, A)$
- left action: $(b x)(s)=\int_{G} b(t, s) x\left(t^{-1} s\right) \Delta_{G}(t)^{1 / 2} \mu_{G}(t), \quad b(t, s) \in C_{c}\left(G, \operatorname{Ind}_{H}^{G}(A)\right)$
$-\operatorname{right} \operatorname{action}(x a)(s)=\int_{G} \alpha_{h}\left(x(s h) a\left(h^{-1}\right)\right) \Delta_{H}(h)^{-1 / 2} \mu_{H}(h), \quad a \in C_{c}(G, A)$
$-_{\operatorname{Ind}_{H}^{G}(A) \rtimes_{2} G}\langle x, y\rangle(s, t):=\Delta_{G}(s)^{-1 / 2} \int_{H} \alpha_{h}\left(x(t h) y\left(s^{-1} t h\right)^{*}\right) \mu_{H}(h)$
$-\langle x, y,\rangle_{A \rtimes_{?} H}(h)=\Delta_{H}(h)^{-1 / 2} \int_{G} x\left(t^{-1}\right)^{*} \alpha_{h}\left(y\left(t^{-1} h\right)\right) \mu_{G}(t)$
form closure with respect to induced norm
- continuous extension of actions and scalar products
- show Morita property
for history and references see discussion in Ech10
Theorem 3.82 (Green-Julg theorem). If G is compact, then we have an adjunction

$$
\operatorname{Res}_{G}: L_{K} C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}} \leftrightarrows L_{K_{G}} G C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}}:-\rtimes G
$$

Proof.
unit: $\epsilon_{A}: A \rightarrow \operatorname{Res}_{G}(A) \rtimes_{r} G$

- $a \mapsto$ const $_{a}$ in $C(G, A) \subseteq C^{*}(G, A)$
- use that Haar measure is normalized to see that this is homomorphism
description of the unit as bimodule
- more general:
$-B$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- E a equivariant (right) Hilbert B-module
- action map γ
- form \hat{E} - a $B \rtimes G$-Hilbert module
- right action: $e b:=\int_{G} \gamma_{s}\left(e f\left(s^{-1}\right)\right) \mu(s)$
- $B \rtimes G$-valued scalar product: $\left\langle e, e^{\prime}\right\rangle(s)=\left\langle e, \gamma_{s}\left(e^{\prime}\right)\right\rangle$
apply to A with trivial action
- A becomes right $A \rtimes G$-module \hat{A}
$-\hat{A}$ induces morphism $\epsilon_{A}: L_{h, K}(A) \rightarrow \operatorname{Res}_{G}\left(L_{h, K} A\right) \rtimes_{r} G$
argument that this is the case
$-\langle\hat{A}, \hat{A}\rangle=: I$ - constant functions in $A \rtimes G$
- is ideal in $A \rtimes G$
- linking algebra C for (A, I) is $\operatorname{Mat}_{2}(A)$
- $A \rightarrow C$ left upper corner
- $I \rightarrow C$ right lower corner
- induces $A \rightarrow I$ (identity on A)
- \hat{A} thus induces $A \rightarrow A \rtimes G$ given by inclusion of I
- this is precisely the unit
counit:
- $L^{2}(G, B)$ becomes equivariant $(B \rtimes G, B)$-bimodule
- B-valued scalar product: $\left\langle h, h^{\prime}\right\rangle:=\int_{G} \beta_{s}\left(h\left(s^{-1}\right)^{*} h^{\prime}(s)\right) \mu(s)$
- right B-action: $(h b)(t)=h(t) \beta_{t}(b)$
- left $B \rtimes G$-action: $(f h)(t)=\int_{G} f(s) \beta_{s}\left(h\left(s^{-1} t\right)\right) \mu(s)$
- check: goes to $K\left(L^{2}(G, B)\right)$
- G-action $\sigma_{s}(h)(t)=f(t s)$
$-\operatorname{Res}_{G}(B \rtimes G) \rightarrow K\left(L^{2}(G, B)\right)$
- left convolution commutes with right translation
$L^{2}(G, B)$ induces counit map $\eta_{B}: \operatorname{Res}_{G}(B \rtimes G) \rightarrow B$ in $L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ check triple identities
$\operatorname{Res}_{G}(A) \xrightarrow{\operatorname{Res}_{G}\left(\epsilon_{A}\right)} \operatorname{Res}_{G}\left(\operatorname{Res}_{G}(A) \rtimes_{r} G\right) \xrightarrow{\eta_{\operatorname{Res}_{G}(A)}} \operatorname{Res}_{G}(A)$
- $a \mapsto \operatorname{const}_{a} \rightarrow \operatorname{const}_{a}\left(\right.$ convolution) in $K\left(L^{2}(G, A)\right) \cong A \otimes K\left(L^{2}(G)\right)$
- this is left upper corner inclusion with projection onto the G-invariants
$B \rtimes G \xrightarrow{\epsilon_{B \rtimes G}} \operatorname{Res}_{G}(B \rtimes G) \rtimes G \xrightarrow{\eta_{B} \rtimes G} B \rtimes G$
- write this as tensor products of bimodules
$\eta_{\operatorname{Res}_{G}(B \rtimes G)} \rtimes G \circ \epsilon_{B \rtimes G}$ is given by
$\widehat{\left.\operatorname{Res}_{G} \widehat{(B \rtimes} G\right)} \otimes_{\operatorname{Res}_{G}(B \rtimes G) \rtimes G}\left(L^{2}(G, B) \rtimes G\right) \cong \ldots$
this represents identity

Theorem 3.83. If G is discrete, then we have an adjunction

$$
-\rtimes_{\max }: L_{K_{G}} G C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}} \leftrightarrows L_{K} C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}}: \operatorname{Res}_{G}
$$

Proof. unit: $\epsilon_{A}: A \rightarrow \operatorname{Res}_{G}\left(A \rtimes_{\max } G\right)$

- $a \mapsto a \delta_{e}$
- weakly equivariant with cocycle: $\sigma_{g}:=\delta_{g}$
$-\delta_{g}\left(a \delta_{e}\right) \delta_{g^{-1}}=\delta_{g}\left(a \delta_{g^{-1}}\right)=\alpha_{g}(a) \delta_{e}$
- get map $\epsilon_{A}: L_{h, K_{G}}(A) \rightarrow L_{h, K_{G}}\left(\operatorname{Res}_{G}\left(A \rtimes_{\max } G\right)\right)$
can be more explicit: is useful for calculations
- $g \mapsto \delta_{g}$ is homomorphism $G \rightarrow U\left(M\left(A \rtimes_{\max } G\right)\right)$
$-\operatorname{get}\left(A \rtimes_{\max } G, \delta\right)$ in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
$-A \rightarrow\left(A \rtimes_{\max } G, \delta\right)$ is equivariant
$-\epsilon_{A}: L_{h, K_{G}}(A) \xrightarrow{a \mapsto a \delta_{e}} L_{h, K_{G}}\left(A \rtimes_{\max } G, \delta\right) \xrightarrow{L(E)} L_{h, K_{G}}\left(\operatorname{Res}_{G}\left(A \rtimes_{\max } G\right)\right)$
$-E$ is $\left.\left(A \rtimes_{\max } G, \delta\right), \operatorname{Res}_{G}\left(A \rtimes_{\max } G\right)\right)$-bimodule as in Example 3.79
- get bimodule $\operatorname{Res}_{G}\left(A \rtimes_{\text {max }} G\right)$
counit: $\eta_{B}: \operatorname{Res}_{G}(B) \rtimes_{\max } G \rightarrow B$
- trivial G-action and left multiplication on B extends to $B \rtimes_{\max } G$-action on B
- get \hat{B} - a $\left(\operatorname{Res}_{G}(B) \rtimes_{\text {max }} G, B\right)$-bimodule
- induces a map $\operatorname{Res}_{G}(B) \rtimes_{\max } G \rightarrow B$
$-f \mapsto \sum_{s \in G} f(s)$
check triple identities:
$\operatorname{Res}_{G}(B) \xrightarrow{\epsilon_{\operatorname{Res}_{G}(B)}} \operatorname{Res}_{G}\left(\operatorname{Res}_{G}(B) \rtimes_{\max } G\right) \xrightarrow{\operatorname{Res}_{G}\left(\eta_{B}\right)} \operatorname{Res}_{G}(B)$
$-b \mapsto \sum_{s \in G}\left(b \delta_{e}\right)(s)=b$
- this is obviously the identity
$A \rtimes_{\max } G \xrightarrow{\epsilon_{A} \rtimes_{\max } G} \operatorname{Res}_{G}\left(A \rtimes_{\max } G\right) \rtimes_{\max } G \xrightarrow{\eta_{A \rtimes_{\max } G}} A \rtimes_{\max } G$
see e.g. Par15, Sec. 3]

Ψ is given by Lemma 3.31
- E^{\prime} is like E but for trivial action
- the same map as in Lemma 3.31 also induces a two-morphism from $E \rtimes_{\max } G$ to $E^{\prime} \rtimes_{\max } G \circ \Psi$ making the diagram commute
- use Example 3.78 to produce homotopy
- $\phi(f)(g, h)=\left(\delta_{h} \cdot\left(f(h) \delta_{e}\right)\right)(g) \delta_{e}=f(h) \delta_{h}(g)$
$-\eta_{A \rtimes_{\max } G}(\phi(f)(g, h))=\sum_{h \in G} \phi(f)(g, h)=f(g)$

3.3 Forcing exactness and Bott

3.3.1 The localization L !

$!\in\{\mathrm{ex}$, se, splt $\}$
want a left exact localization

$$
L_{!}: L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}
$$

- such that

$$
L_{h, K_{G},!}: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \xrightarrow{L_{k}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \xrightarrow{L_{K_{G}}} L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \xrightarrow{L_{1}} L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}
$$

sends !-exact sequences of C^{*}-algebras to fibre sequences

- in case $!=$ se, splt: require the corresponding splits equivariant
consider !-split exact sequence of G - C^{*}-algebras

$$
0 \rightarrow A \rightarrow B \xrightarrow{f} C \rightarrow 0
$$

form diagram:

$\hat{W}_{!}$- set of morphisms $L_{h, K_{G}}\left(\iota_{f}\right)$ for all !-exact sequences as above with C contractible

- $W_{!}$- closure of $\hat{W}_{\text {! }}$ under 2-out-of 3 and pull-backs

Definition 3.84.

$$
L_{!}: L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}} \rightarrow L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}
$$

is the Dwyer Kan localization at $W_{!}$.

Proposition 3.85.

1. $L_{!}$is left exact.
2. L! symmetric monoidal.
3. \otimes on $L_{K_{G}} G C^{*} \mathrm{Alg}_{h,!}^{\mathrm{nu}}$ is bi-left exact.
4. $L_{K_{G}} G C^{*} \mathrm{Alg}_{h,!}^{\mathrm{nu}}$ is semi-additive and $L_{!}$preserves finite coproducts.

Proof. same as non-equivariant case
universal properties:

- for any left exact ∞-category \mathbf{D} :

$$
L_{h, K_{G},!}^{*}: \operatorname{Fun}^{\operatorname{lex}}\left(G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\widetilde{ }} \boldsymbol{F u n}^{h, G s, S c h+!}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right)
$$

- for any symmetric monoidal left exact ∞-category \mathbf{D} :

$$
L_{h, K_{G},!}^{*}: \operatorname{Fun}_{(\operatorname{lax})}^{\otimes, \operatorname{lex}}\left(G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}, \mathbf{D}\right) \xrightarrow{\simeq} \operatorname{Fun}_{(\operatorname{lax})}^{\otimes, h, G s, S c h+!}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right)
$$

there is a separable version of all that
Remark 3.86 (Descend of functors).
the functors $\operatorname{Res}_{G}^{L}, \operatorname{Ind}_{H}^{G}$ and $-\rtimes_{\text {? }} G$ preserve suitable exact sequences but:

- it is not clear that they preserve Schochet fibrations
- therefore not clear that the descends to $L_{K_{G}} G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$ are left-exact
- they perserve $\hat{W}^{\text {! }}$
- but not clear that they preserve $W_{!}$
- so do not expect that these functors descend to $L_{K_{G}} G C^{*} \mathrm{Alg}_{h,!}^{\mathrm{nu}}$
- fortunatlely this is intermediate step

3.3.2 Bott periodicity and $K K_{\text {sep }}^{G}$ and $\mathrm{E}_{\text {sep }}^{G}$

have Toeplitz extension

$$
0 \rightarrow K \rightarrow \mathcal{T} \rightarrow C\left(S^{1}\right) \rightarrow 0
$$

- no G-action
- reduced Toeplitz extension

$$
0 \rightarrow K \rightarrow \mathcal{T}_{0} \rightarrow S(\mathbb{C}) \rightarrow 0
$$

Lemma 3.87. If $F: G C^{*} \mathrm{Alg}^{\mathrm{nu}} \rightarrow \mathrm{M}$ is homotopy invariant, G-stable, split-exact and takes values in groups, then $F\left(\mathcal{T}_{0}\right) \simeq 0$.

Proof. same as in non-equivariant case
! in $\{\mathrm{ex}, \mathrm{se}\}$

- reduced Toeplitz extension is semisplit
$\left.-\operatorname{get} \beta_{\mathbb{C},!}: \Omega^{2}\left(L_{h, K_{G},!}(\mathbb{C})\right) \simeq \Omega\left(L_{h, K_{G},!}(S(\mathbb{C}))\right) \rightarrow L_{h, K_{G},!}(K)\right) \simeq L_{h, K_{G},!}(\mathbb{C})$
$-\beta_{A,!}:=\beta_{\mathbb{C},!} \otimes A$
for A in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$:
Corollary 3.88. If $E: L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}} \rightarrow \mathbf{M}$ is left exact and takes values in groups, then the boundary map $E\left(\beta_{A,!}\right): E\left(\Omega_{!}^{2} A\right) \rightarrow E(A)$ is an equivalence.

Proof. - consider $F:=E(-\otimes A)$
$-F\left(\beta_{\mathbb{C},!}\right)=E\left(\beta_{A,!}\right)$

- F of reduced Toeplitz sequence is E of $0 \rightarrow K \otimes A \rightarrow \mathcal{T}_{0} \otimes A \rightarrow S(A) \rightarrow 0$
- is fibre sequence
- F annihilates middle term

Corollary 3.89. If A is a group in $L_{K_{G}} G C^{*} \operatorname{Alg}_{h,!}^{\mathrm{nu}}$, then $\beta_{A,!}: \Omega_{!}^{2}(A) \rightarrow A$ in $L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}$ is an equivalence.

Corollary 3.90. We have a Bousfield localization

$$
\operatorname{incl}:\left(L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}\right)^{\text {group }} \leftrightarrows L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}: \Omega_{!}^{2}
$$

with counit $\beta: \Omega_{!}^{2} \rightarrow$ id.
have separable version
Definition 3.91. We define the ∞-category

$$
\mathrm{KK}_{\mathrm{sep},!}^{G}:=\left(L_{K_{G}} G C^{*} \mathbf{A l g}_{h,!}^{\mathrm{nu}}\right)^{\text {group }}
$$

and
$\mathrm{kk}_{\mathrm{sep},!}: G C^{*} \mathbf{A l g}_{\mathrm{sep}}^{\mathrm{nu}} \xrightarrow{L_{\text {sep }, h}} G C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}} \xrightarrow{L_{K_{G}}} L_{\text {sep }, K_{G}} G C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}} \xrightarrow{L_{\text {sep },!}} G C^{*} \mathbf{A l g}_{\mathrm{sep}, h,!}^{\mathrm{nu}} \xrightarrow{\Omega_{\mathrm{sep},!}^{2}} \mathrm{KK}_{\text {sep },!}^{G}$

Lemma 3.92. If $F: G C^{*} \mathrm{Alg}^{\mathrm{nu}} \rightarrow \mathbf{M}$ is a homotopy invariant and semi-exact functor, then it is Schochet exact.

Proof.
note: Schochet exact means: F sends Schochet fibrant pull-back squares

to pull-back squares

- by stability of \mathbf{M} : it suffices to consider case with $C=0$, i.e. Schochet exact sequences assume: $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is Schochet exact
- have diagram

- lower sequence is fibre sequence since mapping cone sequence is semi-exact and F is semiexact
L_{h} sends both sequences to fibre sequences by Schochet exactness
- $L_{h}\left(h_{f}\right)$ is equivalence
- $L_{h}\left(\iota_{f}\right)$ is equivalence
- hence $F\left(\iota_{f}\right)$ is equivalence by homotopy invariance of F
the horizontal sequence in the diagram above are equivalent
- upper sequence is fibre sequence
consider
$-\otimes_{\text {? }}$ in connection with localization $!\in\{\mathrm{se}, \mathrm{ex}\}$
- allowed combinations:

$!\backslash ?$	min	max
se	yes	yes
ex	no	yes

Theorem 3.93.

1. $\mathrm{KK}_{\text {sep,! }}^{G}$ is a stable ∞-category.
2. $\mathrm{kk}_{\mathrm{sep},!}^{G}$ is symmetric monoidal and $\otimes_{\text {? }}$ is bi-exact.
3. Fun $^{e x}\left(\mathrm{KK}_{\text {sep },!}^{G}, \mathbf{D}\right) \stackrel{\mathrm{kk}_{\text {seep, }}^{G,!}}{\simeq} \operatorname{Fun}^{h, G s,!}\left(G C^{*} \mathbf{A l g}^{\text {nu }}, \mathbf{D}\right)$ for any stable ∞-category \mathbf{D}.
4. $\operatorname{Fun}_{(l \mathrm{lax})}^{\otimes, e x}\left(\mathrm{KK}_{\text {sep, },!}^{G}, \mathbf{D}\right) \stackrel{\substack{\mathrm{kk} \\ \text { sep, },!}}{\sim} \operatorname{Fun}_{(\text {lax })}^{\otimes, h, G s,!}\left(G C^{*} \operatorname{Alg}^{\mathrm{nu}}, \mathbf{D}\right)$ for any symmetric monoidal stable ∞-category \mathbf{D}.
standard notation

$$
\begin{array}{cl}
\mathrm{KK}_{\text {sep }}^{G}:=\mathrm{KK}_{\mathrm{sep}, \mathrm{se}}^{G}, & \mathrm{kk}_{\mathrm{sep}}^{G}:=\mathrm{kk}_{\mathrm{sep}, \mathrm{se}}^{G} \\
\mathrm{E}_{\mathrm{sep}}^{G}:=\mathrm{KK}_{\mathrm{sep}, \mathrm{ex}}^{G}, & \mathrm{e}_{\mathrm{sep}}^{G}:=\mathrm{kk}_{\mathrm{sep}, \mathrm{ex}}^{G}
\end{array}
$$

3.3.3 Descend of functors

$L^{G}:=\Omega_{\text {sep },!}^{2} \circ L_{\text {sep },!}: G C^{*} \operatorname{Alg}_{\text {sep }, h}^{\mathrm{nu}} \rightarrow \mathrm{KK}_{\mathrm{sep},!}^{G}$
by construction: for any stable ∞-category \mathbf{D}

$$
L^{*}: \boldsymbol{F u n}^{e x}\left(\mathrm{KK}_{\mathrm{sep},!}^{G}, \mathbf{D}\right) \xrightarrow{\leftrightharpoons} \boldsymbol{F u n}^{1 \mathrm{lex},!}\left(L_{K_{G}} C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}}, \mathbf{D}\right) \simeq \boldsymbol{F u n}^{!}\left(L_{K_{G}} C^{*} \mathbf{A l g}_{\mathrm{sep}, h}^{\mathrm{nu}}, \mathbf{D}\right.
$$

use Lemma 3.92

- Fun!- which send (images of) !-exact sequences to fibre sequences
$G \rightarrow L$ - homomorphism

$$
\begin{aligned}
& L_{K_{L}} L C^{*} \mathbf{A} \lg _{\mathrm{sep}, h}^{\mathrm{nu}} \xrightarrow{\operatorname{Res}_{G}^{L}} L_{K_{G}} G C^{*} \mathbf{A} \lg _{\mathrm{sep}, h}^{\mathrm{nu}}
\end{aligned}
$$

$-\operatorname{Res}_{G}^{L}: L_{K_{L}} L C^{*} \operatorname{Alg}_{\text {sep }, h}^{\mathrm{nu}} \rightarrow L_{K_{G}} G C^{*} \mathbf{A l g}_{\text {sep }, h}^{\mathrm{nu}}$ preserves !-exact sequences

- $L^{G} \circ \operatorname{Res}_{G}^{L} \in \operatorname{Fun}^{\prime}\left(L_{K_{L}} L C^{*} \mathbf{A l g}_{\text {sep }, h}^{\mathrm{nu}}, \mathbf{D}\right)$ sends !-exact sequences to fibre sequences

Corollary 3.94. We have a left-exact descended functor

$$
\operatorname{Res}_{G}^{L}: \mathrm{KK}_{\text {sep },!}^{L} \rightarrow \mathrm{KK}_{\text {sep },!}^{G}
$$

$H \subseteq G$ closed subgroup

Lemma 3.95. $\operatorname{Ind}_{H}^{G}$ preserves !-exact sequences.

Proof. construct for any A natural retract:

$$
\operatorname{Ind}_{H}^{G}(A) \xrightarrow{\alpha} C_{0}(\operatorname{supp}(\chi)) \otimes A \xrightarrow{\beta} \operatorname{Ind}_{H}^{G}(A)
$$

- consider function $\chi \in C(G)$
$-\int_{H} \chi(g h) \mu(h)=1$
- require that for every g in G there exists a open U of G and compact K in H such that $\chi\left(g^{\prime} h\right)=0$ for $g^{\prime} \in U, h \notin K$
- define maps:
$-\alpha: f \mapsto(g \mapsto \chi(g) f(g))$
$-\beta: f \mapsto\left(g \mapsto \int_{H} \alpha_{h} f(g h) \mu(h)\right)$
- check H-equivariance: $g h^{\prime} \mapsto \int_{H} \alpha_{h} f\left(g h^{\prime} h\right) \mu(h)=\alpha_{h^{\prime},-1} \int_{H} \alpha_{h} f(g h) \mu(h)$
— check retract: $\beta(\alpha(f))=f$
$-\int_{H} \alpha(h) \chi(g h) f(g h) \mu(h)=\int_{H} \chi(g) f(g) \mu(h)=f(g)$
$C_{0}(\operatorname{supp}(\chi)) \otimes-$ is preserves !-exact sequences
- a retract of a !-exact sequence is again one
? in $\{\max , r\}$
Corollary 3.96. We have a left-exact descended functor $\operatorname{Ind}_{H}^{G}: \mathrm{KK}_{\text {sep },!}^{H} \rightarrow \mathrm{KK}_{\text {sep },!}^{G}$.
$\rtimes_{\text {? }} G$ preserves contractibility and zero
- use $(A \otimes C(X)) \rtimes_{?} G \cong(A \rtimes G) \otimes C(X)$
- it preserves contractible algebras
- use $\operatorname{Ind}_{H}^{G}(A \otimes C(X)) \cong \operatorname{Ind}_{H}^{G}(A) \otimes C(X)$
$-\operatorname{Ind}_{H}^{G}(0) \cong 0$
consider

$-\rtimes_{\text {? }}$ in connection with localization $!\in\{\mathrm{se}, \mathrm{ex}\}$
- allowed combinations:

$!\backslash ?$	r	max
se	yes	yes
ex	no	yes

Lemma 3.97. $-\rtimes_{\text {? }} G$ preserves !-exact sequences.

Proof. for ex and max:
$0 \rightarrow I \rightarrow A \rightarrow Q \rightarrow 0$
$0 \rightarrow I \rtimes_{\max } G \rightarrow A \rtimes_{\text {max }} G \rightarrow Q \rtimes_{\text {max }} G \rightarrow 0$
$C_{c}(G,-)$ preserves exact sequences and takes values in pre- C^{*}-algebras

- compl is left-adjoint and preserves push-outs
remains to show: $I \rtimes_{\max } G \rightarrow A \rtimes_{\max } G$ is injective
- every rep of $I \rtimes^{\text {alg }} G$ extends to rep of $A \rtimes^{\text {alg }} G$
for se:
split induces split of $0 \rightarrow C_{c}(G, I) \rightarrow C_{c}(G, A) \rightarrow C_{c}(G, Q) \rightarrow 0$
- split extends to split under completion
- needs more analytic arguments

Corollary 3.98. We have a left-exact descended functor $-\rtimes G: \mathrm{KK}_{\text {sep,! }}^{G} \rightarrow \mathrm{KK}_{\text {sep, },!}$.
Corollary 3.99.

1. Green's imprimitivity theorem: For $H \subseteq G$ closed:

$$
-\rtimes_{?} H \stackrel{\simeq}{\rightarrow} \operatorname{Ind}_{H}^{G}(-) \rtimes_{?} G: \mathrm{KK}_{\mathrm{sep},!}^{H} \rightarrow \mathrm{KK}_{\mathrm{sep},!}^{G} .
$$

2. For $H \subseteq G$ open and closed: We have adjunction

$$
\operatorname{Ind}_{H}^{G}: \mathrm{KK}_{\mathrm{sep},!}^{H} \leftrightarrows \mathrm{KK}_{\mathrm{sep},!}^{G}: \operatorname{Res}_{H}^{G}
$$

3. Green-Julg Theorem: If G is compact, then we have an adjunction

$$
\operatorname{Res}_{G}: \mathrm{KK}_{\mathrm{sep},!} \leftrightarrows \mathrm{KK}_{\mathrm{sep},!}^{G}:-\rtimes G .
$$

4. Dual Green-Julg: If G is discrete, then we have an adjunction

$$
-\rtimes_{\max } G: \mathrm{KK}_{\mathrm{sep},!}^{G} \leftrightarrows \mathrm{KK}_{\mathrm{sep},!}: \operatorname{Res}_{G}
$$

3.3.4 Extension to from separable to all C^{*}-algebras

Definition 3.100. We define:

$$
\mathrm{KK}_{!}^{G}:=\operatorname{Ind}\left(\mathrm{KK}_{\mathrm{sep},!}^{G}\right)
$$

have canonical functor $y: \mathrm{KK}_{\text {sep,! }}^{G} \rightarrow \mathrm{KK}_{!}^{G}$
Definition 3.101. We define:

$$
\mathrm{kk}_{!}: G C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow \mathrm{KK}_{!}^{G}
$$

as the left Kan-extension

Proposition 3.102.

1. $\mathrm{KK}_{!}^{G}$ and $\mathrm{kk}_{!}$have symmetric monoidal refinements for $\otimes_{\text {? }}$.
2.

$$
\begin{equation*}
\operatorname{Fun}^{\mathrm{colim}}\left(\mathrm{KK}_{!}^{G}, \mathbf{D}\right) \stackrel{\mathrm{kk}_{1}^{G, *}}{\simeq} \operatorname{Fun}^{h, G s,!, \text { sfin }}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right) \tag{3.3}
\end{equation*}
$$

for any cocomplete stable ∞-category
3.

$$
\begin{aligned}
& \operatorname{Fun}_{(\operatorname{lax})}^{\otimes, \text { colim }}\left(\mathrm{KK}_{!}^{G}, \mathbf{D}\right) \stackrel{\mathrm{kk}^{G, *}}{\simeq} \operatorname{Fun}_{(\operatorname{lax})}^{\otimes, h, G s,!, \text { sfin }}\left(G C^{*} \mathbf{A l g}^{\mathrm{nu}}, \mathbf{D}\right) \\
& \text { for any cocomplete stable symmetric monoidal } \infty \text {-category } \mathbf{D} \text {. }
\end{aligned}
$$

standard notation

$$
\begin{aligned}
\mathrm{KK}^{G}: & =\mathrm{KK}_{\mathrm{se}}^{G}, & \mathrm{kk}^{G}:=\mathrm{kk}_{\mathrm{se}}^{G} \\
\mathrm{E}_{\mathrm{sep}}^{G} & :=\mathrm{KK}_{\mathrm{ex}}^{G}, & \mathrm{e}^{G}:=\mathrm{kk}_{\mathrm{ex}}^{G}
\end{aligned}
$$

want to extend functors
C - a functor from $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ to $H C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- for $A \rightarrow B$ define $C(A)^{C(B)}$ as image of $C(A) \rightarrow C(B)$
- assume: C preserves separable algebras
- then $C(A)^{C(B)}$ is separable provided A is separable

Definition 3.103. We say that C is Ind-s-finitary if it has the following properties:

1. For every A in $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$ the inductive system $\left(C\left(A^{\prime}\right)^{C(A)}\right)_{A^{\prime} \subseteq \text { sep } A}$ is cofinal in the inductive system of all invariant separable subalgebras of $C(A)$.
2. The canonical map $\left(C\left(A^{\prime}\right)\right)_{A^{\prime} \subseteq \operatorname{sep} A} \rightarrow\left(C\left(A^{\prime}\right)^{C(A)}\right)_{A^{\prime} \subseteq \operatorname{sep} A}$ is an isomorphism in $\operatorname{Ind}\left(H C^{*} \mathbf{A l g}^{\mathrm{nu}}\right)$.

Lemma 3.104. Assume that C preserves separable algebras and satisfies Item 1. If C satisfies one of:

1. C preserves inclusions
2. C preserves countably filtered colimits
then C is Ind-s-finitary.

Proof. Argument in case 2.
consider an invariant separable subalgebra A^{\prime} of A

- gives the outer part of the following diagram

- poset of invariant separable subalgebras of A is countably filtered
C preserves countably filtered colimits
$-\operatorname{colim}_{A^{\prime} \subseteq \operatorname{sep} A} C\left(A^{\prime}\right) \cong C(A)$
- the left vertical arrow is the canonical inclusion into the colimit.
- let I be the kernel of $C\left(A^{\prime}\right) \rightarrow C\left(A^{\prime}\right)^{C(A)}$
- I is separable
- I is the kernel of $C\left(A^{\prime}\right) \rightarrow C(A)$.
- find an invariant separable subalgebra $A^{\prime \prime}$ of A such that I is annihilated by $C\left(A^{\prime}\right) \rightarrow C\left(A^{\prime \prime}\right)$
- use here countably filtered and annihilate a countable sets of generators of I
get dotted arrow.
- existence of $A^{\prime \prime}$ for given A^{\prime} shows:
- the canonical map of inductive systems $\left(C\left(A^{\prime}\right)\right)_{A^{\prime} \subseteq_{\operatorname{sep}} A} \rightarrow\left(C\left(A^{\prime}\right)^{C(A)}\right)_{A^{\prime} \subseteq_{\operatorname{sep}} A}$ has an inverse in $\operatorname{Ind}\left(\boldsymbol{\operatorname { F u n }}\left(B H, C^{*} \mathbf{A l g}^{\mathrm{nu}}\right)\right)$.

BELb, Lem. 4.3]
Lemma 3.105. If F is some s-finitary functor on $H C^{*} \mathbf{A l g}^{\mathrm{nu}}$ and C is Ind-s-finitary, then the composition $F \circ C$ is an s-finitary functor on $G C^{*} \mathbf{A l g}^{\mathrm{nu}}$.

Proof. A in $H C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- must show: canonical morphism is an equivalence:

$$
\begin{equation*}
\underset{A^{\prime} \subseteq \operatorname{sep} A}{\operatorname{colim}} F\left(C\left(A^{\prime}\right)\right) \rightarrow F(C(A)) \tag{3.5}
\end{equation*}
$$

Condition 3.103|2 implies equivalence:

$$
\underset{A^{\prime} \subseteq \operatorname{sep} A}{\operatorname{colim}} F\left(C\left(A^{\prime}\right)\right) \xrightarrow{\simeq} \underset{A^{\prime} \subseteq \operatorname{cosp} A}{\operatorname{colim}} F\left(C\left(A^{\prime}\right)^{C(A)}\right)
$$

Condition 3.10311 implies equivalence:

$$
\underset{A^{\prime} \subseteq \operatorname{sep} A}{\operatorname{colim}} F\left(C\left(A^{\prime}\right)^{C(A)}\right) \xrightarrow{\simeq} \underset{B^{\prime} \subseteq \operatorname{col} C(A)}{\operatorname{col} \operatorname{imp}_{\operatorname{sep}}} F\left(B^{\prime}\right)
$$

F is s-finitary: get equivalence

$$
\underset{B^{\prime} \subseteq \operatorname{sep} C(A)}{\operatorname{colim}} F\left(B^{\prime}\right) \xrightarrow{\cong} F(C(A))
$$

composition of these equivalences is the desired equivalence (3.5).
Proposition 3.106. Assume

1. F preserve separable algebras
2. $F_{\text {|sep }}$ descends to $\mathrm{KK}_{\mathrm{sep}, \text {, }}$
3. F is Ind-s-finitary

Then we have an essentially unique colimit- and compact object preserving factorization

Proof.

define \hat{F} by universal property of $y: \mathrm{KK}_{\text {sep },!}^{H} \rightarrow \mathrm{KK}_{!}^{H}$

- \hat{F} preserves filtered colimits
- must show that "back face" of the cube commutes

- outer square commutes by construction
- the two triangles commute
- $\mathrm{kk}^{G} \circ \tilde{F}$ is s-finitary by Lemma 3.105
- $\hat{F} \circ \hat{k}^{H}$ is s-finitary by definition of kk^{H} and since \hat{F} preserves filtered colimits
- $\hat{F} \circ \hat{\mathrm{kk}}{ }^{H}$ is the left Kan extension of $\mathrm{kk}^{G} \circ \tilde{F}$
$-\mathrm{kk}^{G} \circ F$ is the left Kan extension of $\mathrm{kk}^{G} \circ \tilde{F}$
- hence both are equivalence.

Proposition 3.107. $\operatorname{Res}_{G}^{L}, \operatorname{Ind}_{H}^{G},-\rtimes_{\max } G$ and $-\rtimes_{r} G$ are Ind-s-finitary and preserve separable algebras.

Proof. preservation of separable algebras: clear (use that groups are second countable)
$\operatorname{Res}_{G}^{L}: A^{\prime} \subseteq \operatorname{Res}_{G}^{L}(A) G$-invariant and separable

- cofinality
- $A^{\prime \prime}$ algebra generated by $L A^{\prime}$
- is separable and L-invariant
- $A^{\prime} \subseteq \operatorname{Res}_{G}^{L}\left(A^{\prime \prime}\right)$
$\operatorname{Res}_{G}^{L}$ - preserves inlcusions
- use Lemma 3.104
$\operatorname{Ind}_{H}^{G}$: preserves inclusions by same argument as Lemma 3.95
cofinality:
$B^{\prime} \subseteq \operatorname{Ind}_{H}^{G}(A)$ separable
$-B^{\prime} \subseteq C_{0}(\operatorname{supp}(\chi)) \otimes A$
- find separable $A^{\prime} \subseteq A$ with $B^{\prime} \subseteq C_{0}(\operatorname{supp}(\chi)) \otimes A^{\prime}$
- use again that G is second countable
- Lemma 3.104
$\rtimes_{\max } G:$
- preserves filtered colimits
- cofinality (exercise)
- Lemma 3.104
$\rtimes_{r} G$:
- preserves inclusions
- cofinality (exercise)
- Lemma 3.104

Corollary 3.108. We have descended colimit- and compact object preserving functors

1. For any homomorphism $L \rightarrow G$:

$$
\operatorname{Res}_{G}^{L}: \mathrm{KK}_{!}^{L} \rightarrow \mathrm{KK}_{!}^{G} .
$$

2. For $H \subseteq G$ closed:

$$
\operatorname{Res}_{G}^{L}: \mathrm{KK}_{!}^{L} \rightarrow \mathrm{KK}_{!}^{G} .
$$

3. $-\rtimes_{r} G: \mathrm{KK}^{G} \rightarrow \mathrm{KK}$ for $? \in\{r, \max \}$ and $-\rtimes_{\max }: \mathrm{E}^{G} \rightarrow \mathrm{E}$.

Corollary 3.109. For! in $\{\mathrm{se}, \mathrm{ex}\}$:

1. Green's imprimitivity theorem: For $H \subseteq G$ closed:

$$
-\rtimes_{?} H \xrightarrow{\simeq} \operatorname{Ind}_{H}^{G}(-) \rtimes_{?} G: \mathrm{KK}_{!}^{H} \rightarrow \mathrm{KK}_{!}^{G} .
$$

2. For $H \subseteq G$ open and closed: We have adjunction

$$
\operatorname{Ind}_{H}^{G}: \mathrm{KK}_{!}^{H} \leftrightarrows \mathrm{KK}_{!}^{G}: \operatorname{Res}_{H}^{G}
$$

3. Green-Julg Theorem: If G is compact, then we have an adjunction

$$
\operatorname{Res}_{G}: \mathrm{KK}_{!} \leftrightarrows \mathrm{KK}_{!}^{G}:-\rtimes G
$$

4. Dual Green-Julg: If G is discrete, then we have an adjunction

$$
-\rtimes_{\max } G: \mathrm{KK}_{!}^{G} \leftrightarrows \mathrm{KK}_{!}: \operatorname{Res}^{G}
$$

Proposition 3.110. $\operatorname{Res}_{G}^{L}$ has symmetric monoidal refinement.

Proof. have seen: $\operatorname{Res}_{G, \mid K_{\text {sep }}^{L}}^{L}$ is symmetric monoidal

- Ind : $\mathbf{C a t}_{\infty}^{e x} \rightarrow \mathbf{P r}_{\mathrm{st}}^{L}$ is symmetric monoidal functor
- preserves algebras and algebra morphisms
- interpret symmetric monoidal categories and symmetric monoidal functors as commutative algebras an morphisms between them

4 Applications and calculations

4.1 K-homology

4.1.1 Basic Definitions

in general:
$\mathrm{KK}^{G}(\mathbb{C}, \mathbb{C})$ is commutative ring:

- since \mathbb{C} is commutative algebra and coalgebra
- composition product is second structure, a priori only associative
- in this case the same

Definition 4.1. We define the equivariant K-theory spectrum $K U^{G}:=K^{G}(\mathbb{C}, \mathbb{C})$ in CAlg $(\operatorname{Mod}(K U))$
KK^{G} is enriched in $K U^{G}$
G - compact group

- all irreducible unitary representations finite dimensional
- every unitary representation completely reducible (orthogonal sum of irreducible ones)
- \hat{G} - set of equivalence classes of irreducible unitary rep's of G
- $L^{2}(G)$ has $G \times G$-action by left- and right translations
$-\pi \in \hat{G}$
- get homomorphism $V_{\pi}^{*} \otimes V_{\pi} \rightarrow L^{2}(G)$
$-v \otimes w \mapsto\langle v, \pi(g) w\rangle$
- check equivariance: $\pi(h) v \otimes \pi(l) w \mapsto\left\langle v, \pi\left(h^{-1} g l\right) w\right\rangle$

Proposition 4.2 (Peter-Weyl Theorem).

$$
\bigoplus_{\pi \in \hat{G}} V_{\pi}^{*} \otimes V_{\pi} \cong L^{2}(G)
$$

as representation of $G \times G$.
Example 4.3. G - finite

- $|G|:=\sum_{\pi \in \hat{G}} \operatorname{dim}(\pi)^{2}$
- can use this to show that one has found a complete set of representatives
consider representation ringoid:
- isoclasses if finite-dimensional (unitary) representations
- operations \oplus, \otimes
- form ring completion,

Definition 4.4. The representation ring $R(G)$ is the ring completion of the ringoid of finite-dimensional representations.
Lemma 4.5. We have an isomorphism of groups $R(G) \cong \mathbb{Z}[\hat{G}]$.
Example 4.6. C_{2}

- $\hat{C}_{2}=\{1, \sigma\}$
- $\sigma^{2}=1$
$-R\left(C_{2}\right) \cong \mathbb{Z} \oplus \sigma \mathbb{Z}$
$-(n+\sigma m)\left(n^{\prime}+\sigma m^{\prime}\right)=\left(n n^{\prime}+m m^{\prime}\right)+\sigma\left(n m^{\prime}+m n^{\prime}\right)$
- $R\left(C_{2}\right) \cong \mathbb{Z}\left[\zeta_{2}\right]$

Example 4.7. C_{n}

- choose nth root of unity, e.g. $\zeta_{n}:=e^{\frac{2 \pi i}{n}}$
- $\hat{C}_{n} \cong \mathbb{Z} / n \mathbb{Z}$
- for $[k] \in \mathbb{Z} / n \mathbb{Z}$ get
$-[l] \mapsto \zeta_{n}^{l}$
$-R\left(C_{n}\right) \cong \mathbb{Z}\left[\zeta_{n}\right]$
Example 4.8. $U(1)$
$-\widehat{U(1)} \cong \mathbb{Z}$
$-n \mapsto\left(u \mapsto u^{n}\right)$
- $R(U(1)) \cong \mathbb{Z}[\mathbb{Z}] \cong \mathbb{Z}\left[x, x^{-1}\right]$

Example 4.9. $G=S U(2)$

- \hat{G} has basis $\pi_{n}:=S^{n}\left(\mathbb{C}^{2}\right) / \operatorname{im}\left(\|-\|^{2} S^{n+2}\left(\mathbb{C}^{2}\right)\right)$
$-\operatorname{dim}\left(\pi_{n}\right)=n+1$
$-\pi_{n} \otimes \pi_{m} \cong \pi_{n+m}+\pi_{n+m-2}+\ldots$
- $R(G)$ has basis $\left(s_{n}\right)_{n \in \mathbb{N}} s_{n} \cong S^{n}\left(\mathbb{C}^{2}\right)$ - not irreducible
$-s_{n}=\pi_{n}+\pi_{n-2}+\ldots$
- $s_{n} s_{m}=s_{n+m}$
$-R(S U(2)) \cong \mathbb{Z}[x] \cong \mathbb{Z}[\mathbb{N}]$
Proposition 4.10. If G is a compact group, then $K U_{0}^{G} \cong R(G)$ (as rings) and $K U_{1}^{G} \cong 0$.

Proof. first calculate $K U_{*}^{G}$ as a group

- Green-Julg: $K U^{G}=\operatorname{KK}^{G}(\mathbb{C}, \mathbb{C}) \simeq \operatorname{KK}\left(\mathbb{C}, C^{*}(G)\right) \simeq K\left(C^{*}(G)\right)$
- $C^{*}(G) \cong \bigoplus_{\pi \in \hat{G}} \operatorname{End}\left(V_{\pi}\right)$
$-K\left(C^{*}(G)\right) \simeq K\left(\bigoplus_{\pi \in \hat{G}} \operatorname{End}\left(V_{\pi}\right)\right) \simeq \bigoplus_{\pi \in \hat{G}} K U$
- use here: $K\left(\operatorname{End}\left(V_{\pi}\right)\right) \simeq K\left(\operatorname{Mat}_{\operatorname{dim}(\pi)}(\mathbb{C})\right) \simeq K U$
$-K U_{*}^{G} \cong\left\{\begin{array}{cl}\bigoplus_{\pi \in \hat{G}} \mathbb{Z} & *=0 \\ 0 & *=1\end{array}\right.$
- get $K U_{*}^{G} \cong R(G)$ as \mathbb{Z}-graded groups
(ρ, V_{ρ}) - finite-dimensional representation
- is (\mathbb{C}, \mathbb{C})-bimodule
- induces $[\rho] \in \mathrm{KK}_{0}^{G}(\mathbb{C}, \mathbb{C})$
- sum goes to sum
- tensor product goes to product
- get ring map $R(G) \rightarrow \mathrm{KK}_{0}^{G}(\mathbb{C}, \mathbb{C})$
must show that this is isomorphism
must show for π in \hat{G}
- [π] goes to class of projection onto $1_{\pi} \in \operatorname{End}\left(V_{\pi}\right) \subseteq C^{*}(G)$
- under $-\rtimes G$ see that V_{π} goes to $\left(C^{*}(G), C^{*}(G)\right)$-bimodule $V_{\pi} \rtimes G \cong L^{2}(G) \otimes V_{\pi}$
- under this identification:
- left G-action on both, $L^{2}(G)$ and V_{π}
- right G-action only on $L^{2}(G)$
- to complete the Green-Julg iso consider restriction along $\mathbb{C} \rightarrow C^{*}(G)$
- projection onto trivial subrepresentation
- insert Peter-Weyl for $L^{2}(G)$
$-\operatorname{get} \mathbb{C}, C^{*}(G)$-bimodule ${ }^{G}\left(\bigoplus_{\pi^{\prime} \in \hat{G}} V_{\pi^{\prime}}^{*} \otimes V_{\pi^{\prime}} \otimes V_{\pi}\right) \cong V_{\pi}$
- this is bimodule which represenents $\mathbb{C} \rightarrow 1_{\pi}$

Corollary 4.11. If A is a $G^{*}-C^{*}$-algebra, then $K_{*}(A)$ is a module over $R(G)$.

4.1.2 G-equivariant homology theories

we consider G Top - topological spaces with G-action and equivariant continuous maps

- it is topologically enriched
- distinguish a subclass of objects: G-CW-complexes

Definition 4.12. An n-dimensional G-cell is a G-space of the form $G / H \times D^{n}$ for H closed in G.
define G-CW-complexes inductively:

- let A be a G-space

Definition 4.13. We consider A as -1-dimensional relative G - $C W$ complex. An n dimensional G-CW-complex X relative to A is a space obtained as a push-out (by attaching n-dimensional G-cells)

for some n-1-dimensional G - $C W$-complex Y. $A G$ - $C W$-complex is a G-space which is has a filtration $X_{-1} \subseteq X_{0} \subseteq X_{1} \subseteq \ldots$ by n-dimensional G - $C W$-complexes X_{n} such that X_{n+1} is obtained from X_{n} by attaching $n+1$-cells and $X \cong \operatorname{colim}_{n \in \mathbb{N}} X_{n}$.
$G \mathbf{C W}$ - full subcategory of G Top of G-CW complexes

- W_{h} - homotopy equivalences (use topological enrichment)

Definition 4.14. We define the ∞-category of G-spaces $G \mathbf{S p c}:=G \mathbf{C W}\left[W_{h}^{-1}\right]$ as the Dwyer-Kan localization of $G-C W$-complexes at homotopy equivalences.
X in G Top

- H closed subgroup
- X^{H} - H-fixed points in X
$f: X \rightarrow Y$ - a morphism in GTop

Definition 4.15. f is a G-weak equivalence, if $f^{H}: X^{H} \rightarrow Y^{H}$ is a weak equivalence in Top.
$W_{w e}$ - weak equivalence in G Top
Theorem 4.16. The canonical map $G \mathbf{C W}\left[W_{h}^{-1}\right] \rightarrow G \mathbf{T o p}\left[W_{w e}^{-1}\right]$ is an equivalence.
Corollary 4.17. $G \mathbf{S p c} \simeq G \operatorname{Top}\left[W_{w e}^{-1}\right]$.
consider G Orb - full subcategory of G Top on orbits of G

- is topologically enriched
- presents an ∞-category (also denoted by G Orb)
X in G Top
- $S \in G$ Orb
- $X(S):=\ell \operatorname{Hom}_{G T o p}(S, X)$ in Spc
- get functor

$$
G \operatorname{Top} \rightarrow \operatorname{Fun}\left(G \mathbf{O r b}^{\mathrm{op}}, \mathbf{S p c}\right) \simeq \operatorname{PSh}(G \mathbf{O r b}), \quad X \mapsto X(-)
$$

Theorem 4.18 (Elemendorf's theorem). The functor G Top $\rightarrow \mathbf{P S h}(G \mathbf{O r b})$ presents the Dwyer-Kan localization of GTop at the weak equivalences.

Corollary 4.19. $G \mathbf{S p c} \simeq \operatorname{PSh}(G \mathrm{Orb})$
Remark 4.20. $B G \simeq \operatorname{Aut}_{G \text { Orb }}(G)$
$G \mathbf{T o p} \rightarrow \mathbf{P S h}(G \mathbf{O r b}) \xrightarrow{\text { ev }_{G}} \operatorname{Fun}(B G, \mathbf{S p c})$

- this is a further localization
- inverts maps whose underlying map is a homotopy equivalence
- $\operatorname{Fun}(B G, \mathbf{S p c})$ is the home of Borel equivariant homotopy theory

Definition 4.21. An equivariant homology theory is a functor $E: G \mathbf{O r b} \rightarrow \mathbf{M}$ for a stable cocomplete target \mathbf{M}
get colimit preserving functor $E: \mathbf{P S h}(G \mathbf{O r b}) \rightarrow \mathbf{M}$

- get functor $E: G \mathbf{T o p} \rightarrow \mathbf{M}$ which preserves weak equivalences and whose factorization over PSh(GOrb) preserves colimits
- will all be denoted by E
- for X in G Top

$$
E(X) \simeq \int_{G \mathbf{O r b}} X(S) \otimes E(S)
$$

Definition 4.22. An equivariant cohomology theory is a functor $E: G \mathbf{O r b}^{\mathrm{op}} \rightarrow \mathbf{M}$ for a stable complete target \mathbf{M}.
get limit preserving functor $E: \mathbf{P S h}(G \mathbf{O r b})^{\mathrm{op}} \rightarrow \mathbf{M}$

- get functor $E: G \mathbf{T o p}^{\text {op }} \rightarrow \mathbf{M}$ which preserves weak equivalences and whose factorization over $\mathbf{P S h}(G \mathbf{O r b})^{\text {op }}$ preserves limits
- will all be denoted by E
- for X in G Top

$$
E(X) \simeq \int^{G \mathbf{O r b}^{\mathrm{op}}} E(S)^{X(S)}
$$

4.1.3 Equivariant K-theory for compact groups

G - a compact group

- have functor $G \mathbf{O r b}{ }^{\mathrm{op}, \delta} \rightarrow G C^{*} \mathbf{A l g}^{\mathrm{nu}}: S \mapsto C_{0}(S)$ (consider $G \mathbf{O r b}$ as discrete category)
- use here compactness of G in order to ensure that morphisms in $G \mathbf{O r b}$ are proper and therefore preserve C_{0}-functions
now G Orb and $G C^{*} \mathbf{A l g}^{\text {nu }}$ as enriched
- the functor is enriched
- factorizes over $G \mathbf{O r b}^{\mathrm{op}} \rightarrow G C^{*} \mathbf{A l g}_{h}^{\mathrm{nu}}$
- apply kk_{h}^{G}
- get functor $K^{G}: G \mathbf{O r b}^{\text {op }} \rightarrow \mathrm{KK}^{G}$
- define $K_{G}:=\underline{\mathrm{KK}}^{G}\left(K^{G}, \mathbb{C}\right): G$ Orb $\rightarrow \mathrm{KK}^{G}$

Definition 4.23. The functors K^{G} and K_{G} represent G-equivariant KK^{G}-valued K-theory and K-homology.
B in KK^{G}

- can introduce coefficients in B :
- $K_{B}^{G}:=K^{G} \otimes B$
- $K_{G, B}:=\underline{\mathrm{KK}}^{G}\left(K^{G}, B\right)$
- if B is a commutative algebra, then K_{B}^{G} takes values in commutative rings
- since $C_{0}(S)$ is a commutative algebra in $G C^{*} \mathbf{A} \lg ^{\mathrm{nu}}$
calculate values on orbits
- use: $C_{0}(G / H) \simeq \operatorname{Ind}_{H}^{G}(\mathbb{C})$
$-\operatorname{Ind}_{H}^{G}(A) \otimes B \cong \operatorname{Ind}_{H}^{G}\left(A \otimes \operatorname{Res}_{H}^{G}(B)\right)$
- get $-K_{B}^{G}(G / H) \simeq C_{0}(G / H) \otimes B \simeq \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right)$
- $K_{G, B}(G / H) \simeq \operatorname{Coind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right)$
consider $G \mathrm{LCH}_{\text {prop }}$ - locally compact G-spaces and proper maps
$X \mapsto \mathrm{kk}^{G}\left(C_{0}(X)\right)$
- B in KK^{G}

Proposition 4.24. If X is homotopy equivalent to a retract of a finite $G-C W$ complex, then $\mathrm{kk}^{G}\left(C_{0}(X)\right) \otimes B \simeq K_{B}^{G}(X)$ and $\underline{\mathrm{KK}}^{G}\left(C_{0}(X), B\right) \simeq K_{G, B}(X)$.

Proof. the class of X for which this is an equivalence has the following closure properties: - contains G Orb

- is invariant under homotopy equivalence
- is invariant under retracts
- is invariant under attaching G-cells
hence contains all locally compact spaces X which are homotopy equivalent to a retract of a finite G-CW complex
use:
- $G \mathrm{LCH}_{\text {prop }}^{\mathrm{fd}}$ - homotopy retracts of finite G - CW complexes
- $G \mathrm{LCH}_{\text {prop }}^{\mathrm{fd}} \rightarrow \mathbf{P S h}(G \mathbf{O r b})^{\omega}$ is localization at homotopy equivalence
$\left.-\operatorname{Fun}^{\operatorname{Rex}} \mathbf{P S h}(G \mathbf{O r b})^{\omega}, \mathbf{M}\right) \simeq \operatorname{Fun}(G \mathbf{O r b}, \mathbf{M})$ for finitely cocomplete and idempotent complete target
- $F, F^{\prime}: G \mathrm{LCH}_{\text {prop }}^{\mathrm{fd}} \rightarrow \mathbf{M}$
- both homotopy invariant and excisive for cofibrant closed decompositions
- an equivalence $F_{\mid G \mathbf{O r b}} \simeq F_{\mid G \mathbf{O r b}}^{\prime}$ extends essentially uniquely to an equivalence
absolute K-homology (in analogy to the usage of the "absolute" in arithmetic)
$-\operatorname{Mod}\left(K U^{G}\right)$ - valued K-theory and K-homology
- set $\mathrm{K}_{B}^{G}:=\mathrm{KK}^{G}\left(\mathbb{C}, K_{B}^{G}\right): G \mathbf{O r b}^{\mathrm{op}} \rightarrow \operatorname{Mod}\left(K U^{G}\right)$
$-\mathrm{K}_{G, B}:=\mathrm{KK}^{G}\left(\mathbb{C}, K_{G, B}\right): G \mathbf{O r b} \rightarrow \operatorname{Mod}\left(K U^{G}\right)$
Corollary 4.25. If X is homotopy equivalent to a retract of a finite G - $C W$ complex, then

$$
\mathrm{K}_{B}^{G}(X) \simeq K\left(C_{0}(X) \otimes B\right), \quad \mathrm{K}_{G, B}(X) \simeq \mathrm{KK}^{G}\left(C_{0}(X), B\right)
$$

- $\pi_{*} \mathrm{~K}_{B}^{G}(X)$ and $\pi_{*} \mathrm{~K}_{G, B}(X)$ are modules over $R(G)$
\mathcal{F} - a set of subgroups of G

Definition 4.26. \mathcal{F} is called a family of subgroups if it is invariant under conjugation and forming subgroups.

Example 4.27. 1. Cyc
2. All
3. $\mathcal{C o m p}$ - compact subgroups
4. Fin - finite subgroups
5. $\{e\}$ - trivial subgroup
6. Prop - proper
7. $\mathcal{V C y c}$ - virtually cyclic
fix family \mathcal{F} of subgroups

- define ideal $I_{\mathcal{F}}:=\bigcap_{H \in \mathcal{F}}(\operatorname{ker}(R(G) \rightarrow R(H))$

Example:
$I:=I_{\{e\}}$ - dimension ideal
assuem G finite

- γ - conugacy class in G
- $\mathcal{F}(\gamma)$ - family of all $H \subseteq G$ with $H \cap \gamma=\emptyset$
$-(\gamma) \subseteq R(G)$ - ideal of ρ with $\operatorname{tr} \rho(\gamma)=0$
- $L_{(\gamma)}: \operatorname{Mod}\left(K U^{G}\right) \leftrightarrow \operatorname{Mod}\left(K U^{G}\right)_{(\gamma)}: \operatorname{incl}$
- symmetric monoidal Bousfield localization at $\left(K U^{G} \xrightarrow{\alpha} K U^{G}\right)_{\alpha \in R(G) \backslash \gamma}$

Lemma 4.28. $\mathrm{K}_{G, B}(-)_{(\gamma)}$ vanishes on $F(\gamma)$.

Proof. H in $\mathcal{F}(\gamma)$

- can find η in $R(G)$ with
$-\eta_{\mid H}=0$
$-\operatorname{Tr}(\eta)(g) \neq 0$ for all g in γ
- hence $\eta \notin(\gamma)$
- η acts on $\mathrm{K}_{G, B}(G / H)_{(\gamma)}$ by $\eta_{\mid H}=0$
- η acts invertibly on $\mathrm{K}_{G, B,(\gamma)}(G / H)$
- hence $\mathrm{K}_{G, B}(G / H)_{(\gamma)}=0$
$X-G$ space
- X^{γ} - fixed points
- inclusion $X^{\gamma} \rightarrow X$

Theorem 4.29 (Segal localization). If X^{γ} admits an invariant open neighbourhood such hat $X^{\gamma} \rightarrow N$, then

$$
\mathrm{K}_{G, B}\left(X^{\gamma}\right)_{(\gamma)} \rightarrow \mathrm{K}_{G, B}(X)_{(\gamma)}
$$

is an equivalence

Proof. $X^{(\gamma)} \subseteq N$ - open invariant neighbourhood

- have push-out

- have push-out square

left vertical arrow is $0 \rightarrow 0$
- right vertical arrow is equivalence
consider equivariant K-cohomology
- $\mathrm{K}_{B, *}^{G}(X)$ is $R(G)$-module
- \mathcal{F} - a family of subgroups of G

Proposition 4.30. If X is an n-dimensional G - $C W$ complex with stabilizers in \mathcal{F}, then

$$
I_{\mathcal{F}}^{n} \pi_{*} \mathrm{~K}_{B}^{G}(X) \cong 0
$$

Proof. preparation:
assume: $H \in \mathcal{F}$
claim: $I_{\mathcal{F}} \pi_{*} \mathrm{~K}_{B}^{G}(G / H) \cong 0$

- x in $I_{\mathcal{F}}$
$-x \otimes \operatorname{kk}^{G}\left(C_{0}(G / H)\right) \simeq \operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(x)\right)=0$
argue by induction by n
$X_{n}-n$-skeleton
long exact sequence
$\pi_{*} \mathrm{~K}_{B}^{G}\left(X_{n}, X_{n-1}\right) \rightarrow \pi_{*} \mathrm{~K}_{B}^{G}\left(X_{n}\right) \rightarrow \pi_{*} \mathrm{~K}_{B}^{G}\left(X_{n-1}\right) \rightarrow \pi_{*-1} \mathrm{~K}_{B}^{G}\left(X_{n}, X_{n-1}\right)$
outer terms are annihilated by $I_{\mathcal{F}}$
- $\pi_{*} \mathrm{~K}_{B}^{G}\left(X_{n-1}\right)$ annihilated by $I_{\mathcal{F}}^{n-1}$
- z a class in $\pi_{*} \mathrm{~K}_{B}^{G}\left(X_{n}\right)$
$-i$ in $I_{\mathcal{F}}^{n-1}$
- $i z$ comes from $\pi_{*} \mathrm{~K}_{B}^{G}\left(X_{n}, X_{n-1}\right)$
- one more application of element of $I_{\mathcal{F}}$ annihilates class
an $R(G)$-module M is $I_{\mathcal{F}}$-complete if
$M \rightarrow \lim _{n} M / I^{n} M:=\hat{M_{I}}$
is an isomorphism
Corollary 4.31. If X is a G - $C W$ complex with stabilizers in \mathcal{F} and $\lim ^{1} \pi_{1} \mathrm{~K}_{B}^{G}\left(X_{n}\right) \cong 0$, then $\pi_{0} \mathrm{~K}_{B}^{G}(X)$ is $I_{\mathcal{F}}$-complete

Proof. always have Milnor sequence

$$
0 \rightarrow \lim \pi_{*-1}^{1} \mathrm{~K}_{B}^{G}\left(X_{n}\right) \rightarrow \pi_{*} \mathrm{~K}_{B}^{G}(X) \rightarrow \lim \pi_{*} \mathrm{~K}_{B}^{G}\left(X_{n}\right) \rightarrow 0
$$

- by assumption $\pi_{0} \mathrm{~K}_{B}^{G}(X) \cong \lim \pi_{0} \mathrm{~K}_{B}^{G}\left(X_{n}\right)$
$-\lim _{m} \pi_{0} K_{B}^{G}(X) / I_{\mathcal{F}}^{m} \cong \lim _{m, n} \pi_{0} \mathrm{~K}_{B}^{G}\left(X_{n}\right) / I_{\mathcal{F}}^{m} \pi_{0} \mathrm{~K}_{B}^{G}\left(X_{n}\right) \cong \lim _{n} \pi_{0} \mathrm{~K}_{B}^{G}\left(X_{n}\right) \simeq \pi_{0} K_{B}^{G}(X)$
always have map $R(G) \rightarrow \pi_{0} \mathrm{~K}^{G}(X), i \mapsto x \cdot 1$
- induced from $X \rightarrow *$
- get map $R(G)_{I_{\mathcal{F}}} \rightarrow \pi_{0} \mathrm{~K}_{B}^{G}(X)$

Theorem 4.32 (Atiyah-Segal completion). $R(G)_{I_{\{e\}}} \rightarrow \pi_{*} K_{B}^{G}(B G)$ as isomorphism.

Proof. later
better approach:

- completeness as a property of M in $\operatorname{Mod}\left(K U^{G}\right)$
$x \in R(G)$
$-M \xrightarrow{x} M \rightarrow M / x$
- define completion at x by $\hat{M_{x}}:=\lim _{n} M / x^{n}$
$I \subseteq R(G)$ - an ideal
- need I to be finitely generated
$-I=\left(x_{1}, \ldots, x_{n}\right)$
- define I-completion
$-\hat{M_{I}}:=\left(\ldots\left(M_{x_{1}}\right)_{x_{2}} \ldots\right)_{x_{n}}$
- is independent of choice of generators
want $M \mapsto \hat{M_{I}}$ as left-adjoint of Bousfield localization
- M in $\operatorname{Mod}\left(K U^{G}\right)$ is I-torsion if M is in $\operatorname{Mod}\left(K U^{G}\right)^{\text {perf }}$ and every element in $\pi_{*} M$ is annihilated by I^{n} for some n
- A in $\operatorname{Mod}\left(K U^{G}\right)$ is I-acyclic if $A \otimes_{K U^{G}} M \simeq 0$ for all I-torsion modules
- it is enough to check $\left.\left(\ldots\left(K U^{G} / x_{1}\right) / x_{2}\right) \ldots\right) / x_{n}$ for the generators x_{i} of I
- i.e. $A\left[x_{1}^{-1}, \ldots, x_{n}^{-1}\right] \simeq 0$
- $f: N \rightarrow N^{\prime}$ in $\operatorname{Mod}\left(K U^{G}\right)$ is called a I-local equivalence if its cofibre is I-acyclic
- M is I-complete if $\operatorname{map}(f, M)$ is an equivalence for all I-local equivalences
- have Bousfield localization $L_{I}: \operatorname{Mod}\left(K U^{G}\right) \rightarrow L_{I} \operatorname{Mod}\left(K U^{G}\right)$
$-L_{I}(M) \simeq \hat{M_{I}}$
for Bousfield localization $\operatorname{Mod}\left(K U^{G}\right) \rightarrow L_{I} \operatorname{Mod}\left(K U^{G}\right)$ of $\operatorname{Mod}\left(K U^{G}\right)$ at $(K(x) \rightarrow$ $\left.K U^{G}\right)_{x \in R(G) \backslash I}$
- I-adic completion
[GM97, Sec. 4]
Theorem 4.33. If X is a $C W$-complex with stabilizers in \mathcal{F}, then $\mathrm{K}_{B}^{G}(X)$ is I-complete.

Proof. $L_{I} \operatorname{Mod}\left(K U^{G}\right)$ is closed under limits

- $K_{B}^{G}(X)$ is a limit over K_{B}^{G} on finite subcomplexes
- if Y is finite G-CW complex with stabilizers in \mathcal{F} then $K_{B}^{G}(Y)$ is I-complete

4.1.4 Locally finite K-homology

G locally compact group

- $G \mathrm{LCH}_{\text {prop }}$ - category of locally compact Hausdorff spaces with G-action and proper maps
- have functor $C_{0}(-): G \mathrm{LCH}_{\text {prop }}^{\mathrm{op}} \rightarrow G C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- B in KK^{G}
- can consider $K_{c, B}^{G}: \mathrm{kk}\left(C_{0}(-)\right) \otimes B: G \mathrm{LCH}_{\text {prop }}^{\mathrm{op}} \rightarrow \mathrm{KK}^{G}$

Definition 4.34. The functor $K_{c, B}^{G}: G \mathrm{LCH}_{\mathrm{prop}}^{\mathrm{op}} \rightarrow \mathrm{KK}^{G}$ is called the compactly supported equivariant K-theory with coefficients in B
Definition 4.35. The functor $K_{G, B}^{l f}:=\underline{\mathrm{KK}}^{G}\left(C_{0}(-), B\right): G \mathrm{LCH}_{\text {prop }} \rightarrow \mathrm{KK}^{G}$ is called the locally finite equivariant K-homology with coefficients in B
Proposition 4.36. $K_{c, B}^{G}$ and $K_{B}^{G, l f}$ are homotopy invariant and excisive for G-invariant cofibrant decompositions into closed subspaces.

Remark 4.37. absolute versions

$$
\begin{gathered}
\mathrm{K}_{G, B}^{l f}(-):=\mathrm{KK}^{G}\left(C_{0}(-), B\right): G \mathrm{LCH}_{\text {prop }} \rightarrow \operatorname{Mod}(K U) \\
\mathrm{K}_{c, B}^{G}(-):=\mathrm{KK}^{G}\left(\mathbb{C}, C_{0}(-) \otimes B\right): G \mathrm{LCH}_{\mathrm{prop}}^{\mathrm{op}} \rightarrow \operatorname{Mod}(K U)
\end{gathered}
$$

assume: B is separable

- $\mathrm{K}_{c, B}^{G}(-)$ sends countable disjoint unions of second countable spaces into coproducts
- $\mathrm{K}_{G, B}^{l f}(-)$ sends countable disjoint unions of second countable spaces into products provided B is in $\mathrm{KK}_{\text {sep }}$
- values: for G discrete (or more generally H clopen):
- use $\left(\operatorname{Ind}_{H}^{G}, \operatorname{Res}_{H}^{G}\right)$-adjunction

$$
\mathrm{K}_{G, B}^{l f}(G / H) \simeq \operatorname{KK}^{G}\left(C_{0}(G / H), B\right) \simeq \operatorname{KK}^{H}\left(\mathbb{C}, \operatorname{Res}_{H}^{G}(B)\right)
$$

- if H is in addition compact

$$
\mathrm{K}_{G, B}^{l f}(G / H) \simeq \operatorname{KK}^{H}\left(\mathbb{C}, \operatorname{Res}_{H}^{G}(B)\right) \simeq K\left(\operatorname{Res}_{H}^{G}(B) \rtimes H\right)
$$

these are not equivariant homology or cohomology theories

- "wedge axiom" not satisfied
- can force an equivariant homology theory
$G \mathrm{LCH}_{\text {prop }}^{G \text { fin }}$ - spaces which are homotopy equivalent to finite G-CW complexes
Definition 4.38. We define the representable $K K^{G}$-theory as the left Kan extension

special case: $R \mathrm{~K}_{G, B}(-):=R \mathrm{KK}^{G}(-, \mathbb{C}, B)$
Proposition 4.39. $R \mathrm{KK}^{G}(-, A, B)$ is an equivariant homology theory
values on orbits:

$$
R \mathrm{~K}_{G, B}(G / H) \simeq\left\{\begin{array}{cl}
K\left(\operatorname{Res}_{H}^{G}(B) \rtimes H\right) & H \in \mathcal{C} o m p \\
\operatorname{KK}^{H}\left(\mathbb{C}, \operatorname{Res}_{H}^{G}(B)\right) & H \notin \mathcal{C} o m p
\end{array}\right.
$$

Remark 4.40. warning this is not Kasparov's definition of $R \mathrm{KK}^{G}(X, A, B)$

- the latter uses $C_{0}(X)$-equivariant $K K^{G}$-theory of $A \otimes C_{0}(X)$ and $B \otimes C_{0}(X)$
- our definition is made to be a homology theory
- this is not clear (probably not true) for Kasparov's theory

4.2 Assembly maps

4.2.1 The Kasparov assembly map

G - locally compact group
Problem 4.41. Does $-\rtimes_{r} G: \mathrm{KK}^{G} \rightarrow \mathrm{KK}$ has a left adjoint?
Example 4.42. G compact:

- Green-Julg:

$$
\operatorname{Res}_{G}: \mathrm{KK} \leftrightarrows \mathrm{KK}^{G}:-\rtimes_{r} G
$$

- left adjoint in this case is Res_{G}
- - $\rtimes_{r} G$ preserves all limits
in general:

Remark 4.43.

\mathcal{C}, \mathcal{D} - left exact ∞-categories

- $R: \mathcal{C} \rightarrow \mathcal{D}$ - finite limit preserving functor
- apply Pro: Cat ${ }^{\text {lex }} \rightarrow \mathbf{P r}^{R}$ (actually an equivalence)

- \hat{R} preserves all limits
- \hat{R} has left-adjoint \hat{L}
$\operatorname{Map}_{\mathcal{D}}(D, R(C)) \simeq \operatorname{Map}_{\operatorname{Pro}(\mathcal{D})}\left(D, y_{\mathcal{D}}(R(C))\right) \simeq \operatorname{Map}_{\operatorname{Pro}(\mathcal{D})}\left(D, \hat{R}\left(y_{\mathcal{C}}(C)\right)\right) \simeq \operatorname{Map}_{\operatorname{Pro}(\mathcal{C})}\left(\hat{L}(D), y_{\mathcal{C}}(C)\right) \simeq$ $\operatorname{colim}_{\operatorname{Map}}^{\mathcal{C}}(\hat{L}(D), C)$
- here in last term interpret $\hat{L}(D)$ is a pro-system $\left(C_{i}\right)_{i \in I}$ in \mathcal{C}
- $\operatorname{Map}_{\mathcal{C}}(\hat{L}(D), C)$ is an inductive system $\left(\operatorname{Map}_{\mathcal{C}}\left(C_{i}, C\right)\right)_{i \in I}$ in $\mathbf{S p c}$
- colimit is over I
$-\rtimes_{r} G: \mathrm{KK}^{G} \rightarrow$ KK preserves finite limits
- admits pro-left adjoint: $\hat{\operatorname{Res}}_{G}: \operatorname{Pro}(\mathrm{KK}) \leftrightarrows \operatorname{Pro}\left(\mathrm{KK}^{G}\right): \widehat{-\rtimes_{r} G}$
$-\operatorname{colim} \operatorname{KK}^{G}\left(\hat{\operatorname{Res}}_{G}(A), B\right) \simeq \operatorname{KK}\left(A, B \rtimes_{r} G\right)$
${\text { Baum-Connes conjecture predicts candidate for } \hat{\operatorname{Res}}_{G} \text { : }}_{\text {: }}$
Definition 4.44. A classifying space $E_{\mathcal{F}} G$ for a family of subgroups \mathcal{F} is a G - $C W$ complex with

$$
E_{\mathcal{F}} G(G / H) \simeq \begin{cases}* & H \in \mathcal{F} \\ \emptyset & H \notin \mathcal{F}\end{cases}
$$

in this definition: $E_{\mathcal{F}} G$ is a topological space

- use the notation also for homotopical object in $G \mathbf{T o p}\left[W^{-1}\right], G \mathbf{S p c}$ or $\mathbf{P S h}(G \mathbf{O r b})$

Lemma 4.45. A classifying space $E_{\mathcal{F}} G$ (as $C W$-complex) exists.

Proof. use Elmendorf:
$-i: G_{\mathcal{F}} \mathrm{Orb} \rightarrow G \mathbf{O r b}$
$-E_{\mathcal{F}} G \simeq i_{!} *_{\mathcal{F}}$
$-*_{\mathcal{F}}-$ final in $\operatorname{PSh}\left(G_{\mathcal{F}} \mathbf{O r b}\right)$
$G C W\left[W_{h}^{-1}\right] \simeq G \mathbf{S p c} \simeq \operatorname{PSh}(G \mathbf{O r b})$
there exists G-CW-complex representing this homotopy type $i_{!^{\prime} *_{\mathcal{F}}}$

Lemma 4.46. If X is a G-CW complex with stabilizers in \mathcal{F}, then $\operatorname{Hom}_{G T o p}\left(X, E_{\mathcal{F}} G\right)$ is contractible.

Proof. assumption on X :
$-X(-) \simeq i_{!} i^{*} X(-)$ for $i: G_{\mathcal{F}} \mathbf{O r b} \rightarrow G$ Orb

- i is fully faithful
$-i^{*} i_{!} \simeq \operatorname{id}_{\mathbf{P S h}\left(G_{\mathcal{F}} \mathrm{Orb}\right)}$
$-i^{*} E_{\mathcal{F}} G \simeq *_{\mathcal{F}}$
use again $G C W\left[W_{h}^{-1}\right] \simeq G \mathbf{S p c} \simeq \mathbf{P S h}(G \mathbf{O r b})$

$$
\begin{aligned}
\ell \operatorname{Hom}_{G \mathbf{T o p}}\left(X, E_{\mathcal{F}} G\right) & \simeq \operatorname{Map}_{\mathbf{P S h}(G \mathbf{O r b})}\left(X(-), E_{\mathcal{F}} G\right) \\
& \simeq \operatorname{Map}_{\mathbf{P S h}(G \mathbf{O r b})}\left(i_{!} i^{*} X(-), E_{\mathcal{F}} G\right) \\
& \simeq \operatorname{Map}_{\mathbf{P S h}\left(G_{\mathcal{F}} \mathbf{O r b}\right)}\left(i^{*} X(-), i^{*} E_{\mathcal{F}} G\right) \\
& \simeq \operatorname{Map}_{\mathbf{P S h}\left(G_{\mathcal{F}} \mathbf{O r b}\right)}\left(i^{*} X(-), *_{\mathcal{F}}\right) \\
& \simeq *
\end{aligned}
$$

Corollary 4.47. The classifying space $E_{\mathcal{F}} G$ is unique up to contractible choice.
choose G-CW complex $E_{\mathcal{F}} G$
Definition 4.48. Let $\mathcal{E}_{\mathcal{F}} G$ denote the inductive system of G-finite subcomplexes of $E_{\mathcal{F}} G$ and inclusions.
$\mathcal{E}_{\mathcal{F}} G$ is filtered
define

$$
\begin{gathered}
\hat{\operatorname{Res}}_{G}(A) \simeq\left(\operatorname{kk}^{G}\left(C_{0}(X)\right) \otimes \operatorname{Res}_{G} A\right)_{X \in \mathcal{E}_{\mathcal{C o m p}_{P}}} \\
\operatorname{colim} \operatorname{KK}^{G}\left(\hat{\operatorname{Res}}_{G}(A), B\right) \simeq \operatorname{colim}_{X \in \mathcal{E}_{\mathcal{F}} G} \operatorname{KK}^{G}\left(C_{0}(X) \otimes \operatorname{Res}_{G} A, B\right) \simeq R \operatorname{KK}^{G}\left(E_{\left.\mathcal{C o m p} G, \operatorname{Res}_{G} A, B\right)}\right.
\end{gathered}
$$

in order to identify $\hat{\operatorname{Res}}_{G}(-)$ as pro-adjoint must construct natural transformation

- natural in B
assume now: X in $G \mathrm{LCH}_{\text {prop }}$ with proper G-action such that X / G is compact
will construct Kasparov's projection $p: \mathbb{C} \rightarrow C_{0}(X) \rtimes G$

Lemma 4.49. There exists function χ in $C_{c}(X)$ with $\int_{G} \chi^{2}\left(g^{-1} x\right) \mu(g)=1$ for all x.

Proof.
for any $[x]$ in X / G choose preimage x in X and positive function χ_{x} in $C_{c}(X)$

- by compactness of X / G : can choose finite family x_{1}, \ldots, x_{n} such that image of $\bigcup_{i=1}^{n} \operatorname{supp}\left(\chi_{x}\right)$ in X / G is all of X / G
- set $\tilde{\chi}:=\sum_{i=1}^{n} \chi_{x_{i}}$
- set $\rho(x):=\int_{G} \chi^{2}\left(g^{-1} x\right) \mu(g)$
- this function is positive and G-invariant
- set $\chi:=\frac{\tilde{\chi}}{\sqrt{\rho}}$
- χ has the required properties
from now on G unimodular (for simplicity):
- $g \mapsto\left(x \mapsto \chi(x) \chi\left(g^{-1} x\right)\right)$ is element in $C_{c}\left(G, C_{0}(X)\right)$
- by properness of action
- consider as element p_{χ} of $C_{0}(X) \rtimes_{r} G$

$$
\begin{aligned}
p_{\chi}^{2}(h, x) & =\int_{G} \chi(x) \chi\left(g^{-1} x\right) \chi\left(g^{-1} x\right) \chi\left(\left(g^{-1} h^{-1}\right) g^{-1} x\right) \mu(g) \\
& =\int_{G} \chi(x) \chi\left(g^{-1} x\right) \chi\left(g^{-1} x\right) \chi\left(h^{-1} x\right) \mu(g) \\
& =\chi(x) \chi\left(h^{-1} x\right) \\
& =p_{\chi}(x, h)
\end{aligned}
$$

check also: $p_{\chi}^{*}=p_{\chi}: p_{\chi}\left(g^{-1} x, g^{-1}\right)=\chi\left(g^{-1} x\right) \chi\left(g g^{-1} x\right)=p_{\chi}(g, x)$
Definition 4.50. p_{χ} is called the Kasparov projection
element of $\mathrm{KK}_{0}\left(\mathbb{C}, C_{0}(X) \rtimes_{r} G\right)$

Lemma 4.51. The space $R(X)$ of χ in $C_{c}(X)$ with $\int_{G} \chi\left(g^{-1} x\right) \mu(g)=1$ is contractible.

Proof. Exercise

- see later
- will show: $\operatorname{sing} R(X)$ is trivial Kan complex

Corollary 4.52. The class p_{χ} is independent of the choice of χ.
notation p_{X}
Definition 4.53. The composition
$\mu_{X, A, B}^{\text {Kasp }}: \operatorname{KK}^{G}\left(C_{0}(X) \otimes \operatorname{Res}_{G} A, B\right) \xrightarrow{-\rtimes G} \mathrm{KK}\left(\left(C_{0}(X) \otimes \operatorname{Res}_{G} A\right) \rtimes_{r} G, B \rtimes_{r} G\right) \xrightarrow{p_{X} \otimes A \circ} \mathrm{KK}\left(A, B \rtimes_{r} G\right)$ is called the Kasparov assembly map for X with coefficients on B.
want a map of pro systems (natural in B)
$\left(\mathrm{KK}^{G}\left(C_{0}(X) \otimes \operatorname{Res}_{G} A, B\right)\right)_{X \in \mathcal{E}_{\text {Comp }} G} \rightarrow \operatorname{KK}\left(A, B \rtimes_{r} G\right)$

- must refine $\mu_{X, A, B}^{\text {Kasp }}$ this to natural transformation in X and B
$f: X \rightarrow Y$ proper G-equivariant
- $f^{*}: R(Y) \rightarrow R(X)$
- $\chi \in R(Y)$
the following commutes

$$
\begin{aligned}
& A \xrightarrow{A \xrightarrow{\left(p_{f^{*} \chi} \otimes A\right) \rtimes_{r} G}\left(C_{0}(X) \otimes A\right) \rtimes_{r} G} \\
& \| \begin{array}{l}
\mid\left(f^{*} \otimes A\right) \rtimes_{r} G \\
A \xrightarrow{\left(p_{\chi} \otimes A\right) \rtimes_{r} G}
\end{array}\left(C_{0}(Y) \otimes A\right) \rtimes_{r} G
\end{aligned}
$$

must improve this idea

- must get rid of choice of χ
superscript pc inducates proper cocompact G-action
Proposition 4.54. We have a natural transformation of functors from $G \mathrm{LCH}_{\mathrm{prop}}^{\mathrm{pc}} \times$ $\mathrm{KK}^{G, \mathrm{op}} \times \mathrm{KK} \rightarrow \operatorname{Mod}(K U)$

$$
\mathrm{KK}^{G}\left(C_{0}(-) \otimes A, B\right) \rightarrow \operatorname{const}_{\mathrm{KK}\left(A, B \rtimes_{r} G\right)} .
$$

Proof. $R:\left(G \mathrm{LCH}_{\text {prop }}^{\mathrm{pc}}\right)^{\mathrm{op}} \rightarrow$ Set

- $X \mapsto R(X)$
- have natural transformation of functors $\left(G \mathrm{LCH}_{\text {prop }}^{\mathrm{pc}}\right)^{\mathrm{op}} \rightarrow$ Set

$$
p: R \rightarrow \operatorname{Hom}_{C^{*}} \mathbf{A l g}^{\mathrm{nu}}\left(\mathbb{C}, C_{0}(-) \rtimes G\right)
$$

- $X \mapsto\left(\chi \mapsto p_{\chi}\right)$
- naturality expresses: $f^{*} p_{\chi}=p_{f^{*} \chi}$
compose with $\Omega^{\infty} \mathrm{KK}$, interpret $R(-)$ with values in Spc
- get natural transformation of functors $\left(G \mathrm{LCH}_{\text {prop }}^{\mathrm{pc}}\right)^{\text {op }} \rightarrow \mathbf{S p c}$
$-p: R \rightarrow \Omega^{\infty} \mathrm{KK}\left(\mathbb{C}, C_{0}(-) \rtimes G\right)$
apply $\left(\Sigma_{+}^{\infty}, \Omega^{\infty}\right)$-adjunction
- get natural transformation of functors $\left(G \mathrm{LCH}_{\mathrm{prop}}^{\mathrm{pc}}\right)^{\mathrm{op}} \rightarrow \mathbf{S p}$
$-p: \Sigma_{+}^{\infty} R \rightarrow \operatorname{KK}\left(\mathbb{C}, C_{0}(-) \rtimes G\right)$
consider functors $p, q: G \mathrm{LCH}_{\text {prop }}^{\mathrm{pc}} \times \Delta \rightarrow G \mathrm{LCH}_{\text {prop }}^{\mathrm{pc}}$
- $q:(X,[n]) \mapsto X \times \Delta^{n}$
- $p:(X,[n]) \mapsto X$
$-\Delta^{n} \rightarrow *$ induces natural transformation $q \rightarrow p$
$E:\left(G \mathrm{LCH}_{\text {prop }}^{\mathrm{pc}}\right)^{\mathrm{op}} \rightarrow \mathbf{S p}$ any functor
- define $\mathcal{H}(E):=q!q^{*} E$ (homotopification)
- $\mathcal{H}(E)(X) \simeq \operatorname{colim}_{\Delta^{\text {op }}} E\left(X \otimes \Delta^{n}\right)$
$-q!p^{*} E(X) \simeq \operatorname{colim}_{\Delta \text { op }} E(X) \simeq E(X)$
- have natural transformation $p^{*} E \rightarrow q^{*} E$
- get $q!p^{*} E \rightarrow q!q^{*} E$
- hence $E \rightarrow \mathcal{H}(E)$
- call E homotopy invariant if $\mathrm{pr}_{X}^{*}: E(X) \rightarrow E\left(X \times \Delta^{1}\right)$ is an equivalence

Proposition 4.55. E is homotopy invariant if and only of $E \rightarrow \mathcal{H}(E)$ is an equivalence.

Proof. Exercise!
Lemma 4.56. $R \rightarrow *$ induces an equivalence $\mathcal{H}\left(\Sigma_{+}^{\infty} R\right) \rightarrow$ const $_{S}$

Proof. must show:
$-\operatorname{colim}_{\Delta^{\text {op }}} \Sigma_{+}^{\infty} R\left(X \otimes \Delta^{n}\right) \simeq S$
$-\operatorname{colim}_{\Delta^{\text {op }}} R\left(X \otimes \Delta^{n}\right) \simeq *\left(\right.$ in $\mathbf{S p c}$, since Σ_{+}^{∞} preserves colimits $)$

- $R\left(X \otimes \Delta^{-}\right)$is simplicial space
- is levelwise discrete since R takes values in sets
- hence $R\left(X \otimes \Delta^{-}\right)$is simplicial set
- $\operatorname{colim}_{\Delta^{\mathrm{op}}} R\left(X \otimes \Delta^{n}\right) \simeq\left|R\left(X \otimes \Delta^{-}\right)\right|$- realization
suffices to show
- $R\left(X \otimes \Delta^{-}\right) \rightarrow *$ is trivial Kan fibration
- any $\chi \in R\left(X \otimes \partial \Delta^{n}\right)$ extends to $\tilde{\chi} \in R\left(X \otimes \Delta^{n}\right)$
- set e.g. $\tilde{\chi}(\sigma t)=\sqrt{\sigma \chi^{2}(x, t)+(1-\sigma) \chi^{2}\left(x, t_{0}\right)}$
$-t \in \partial \Delta$
- σt in Δ^{n} - barizentric coordinates
- t_{0} - zeroth vertex of Δ^{n}
use that $\operatorname{KK}\left(\mathbb{C}, C_{0}(-) \rtimes G\right)$ is homotopy invariant
$-\operatorname{const}_{S} \simeq \mathcal{H}\left(\Sigma_{+}^{\infty} R\right) \rightarrow \mathcal{H}\left(\operatorname{KK}\left(\mathbb{C}, C_{0}(-) \rtimes G\right)\right) \underset{\leftarrow}{\check{E} K}\left(\mathbb{C}, C_{0}(-) \rtimes G\right)$
$\operatorname{const}_{S} \rightarrow \mathrm{KK}\left(\mathbb{C}, C_{0}(-) \rtimes_{r} G\right) \rightarrow \operatorname{map}\left(\operatorname{KK}\left(\left(C_{0}(-) \otimes A\right) \rtimes G, B\right), \operatorname{KK}\left(A, B \rtimes_{r} G\right)\right)$
- second map is composition
- this yields desired natural transformation

$$
\mathrm{KK}\left(\left(C_{0}(-) \otimes A\right) \rtimes G, B\right) \rightarrow \operatorname{const}_{\mathrm{KK}\left(A, B \rtimes_{r} G\right)}: G \mathrm{LCH}_{\text {prop }}^{p c} \rightarrow \operatorname{Mod}(K U)
$$

restrict $R \mathrm{KK}^{G}\left(-, \operatorname{Res}_{G} A, B\right)$ to $G \mathbf{T o p}_{/ E_{\text {comp }} G}$

- the objects in $G \mathrm{LCH}_{\text {prop }}^{G \mathrm{fin}}$ in this slice are in $G \mathrm{LCH}_{\text {prop }}^{\mathrm{pc}}$
- get natural transformation

$$
\mu_{A, B}^{\text {Kasp }}: \operatorname{RKK}^{G}\left(-, \operatorname{Res}_{G} A, B\right) \rightarrow \operatorname{const}_{\mathrm{KK}\left(A, B \rtimes_{r} G\right)}
$$

Conjecture 4.57 (A generalized version of the Baum-Connes Conjecture).

$$
\mu_{E_{\mathcal{C o m p} p} G, A, B}^{\text {Kasp }}: R \mathrm{KK}^{G}\left(E_{\mathcal{C o m p}} G, \operatorname{Res}_{G} A, B\right) \rightarrow \operatorname{KK}\left(A, B \rtimes_{r} G\right)
$$

is an equivalence.
it presents $\hat{\operatorname{Res}_{G}}(A) \simeq\left(\operatorname{kk}^{G}\left(C_{0}(X)\right) \otimes \operatorname{Res}_{G} A\right)_{X \in \mathcal{E}_{\text {comp }} G}$ as pro-left adjoint of $-\rtimes_{r} G$
Conjecture 4.58 (Baum-Connes conjecture for G and B). The assembly map

$$
\mu_{E_{\mathcal{C o m p} p} G, \mathbb{C}, B}^{\text {Kasp }}: R \operatorname{KK}^{G}\left(E_{\mathcal{C o m p}} G, \operatorname{Res}_{G} \mathbb{C}, B\right) \rightarrow \operatorname{KK}\left(\mathbb{C}, B \rtimes_{r} G\right)
$$

is an equivalence.
it is known to be false in general

- but still no counter example for $B=\mathbb{C}$
- if G is compact, then can take constant function
- in this case the Baum Connes conjecture is true: This is the Green-Julg theorem

4.2.2 The Meyer-Nest approach

in this section: G is discrete

- there is a version for locally compact groups
- it depends on generalization of the (Ind, Res)-adjunction
- this has not been discussed in the course

Definition 4.59. Define $\mathcal{C C}$ as the full subcategory of A in KK^{G} with $\operatorname{Res}_{H}^{G}(A) \simeq 0$ for all H in $\mathcal{C o m p}$

- the objects of $\mathcal{C C}$ are called weakly acyclic objects
- a morphism in KK^{G} is called a weak equivalence if its fibre is weakly acyclic

Lemma 4.60. $\mathcal{C C}$ is a thick localizing tensor ideal

Proof. $\operatorname{Res}_{H}^{G}$ is symmetric monoidal and preserves colimits

Definition 4.61. Define $\mathcal{C I}$ as the localizing subcategory generated by $\operatorname{Ind}_{H}^{G}(A)$ for all H in $\mathcal{C o m p}$ and A in KK^{H}.

Lemma 4.62. $\mathcal{C I}$ is a tensor ideal.

Proof. $\operatorname{Ind}_{H}^{G}(A) \otimes B \simeq \operatorname{Ind}_{H}^{G}\left(A \otimes \operatorname{Res}_{H}^{G}(B)\right)$

- the objects of $\mathcal{C I}$ are called compactly induced objects

Example 4.63. $\mathrm{kk}^{G}\left(C_{0}(G / H)\right)$ in $\mathcal{C I}$
X - a finite G-CW-complex with compact stabilizers

- then $C_{0}(X) \in \mathcal{C I}$

Lemma 4.64. The category $\mathcal{C C}$ is the right complement of $\mathcal{C I}$, in particular

$$
\operatorname{map}_{\mathrm{KK}^{G}}(\mathcal{C I}, \mathcal{C C}) \simeq 0
$$

Proof. (Ind, Res) - adjunction

- it is at this point where we use discreteness of G

Lemma 4.65. We have a smashing right Bousfield localization

$$
\text { incl }: \mathcal{C I} \leftrightarrows \mathrm{KK}^{G}: P
$$

Proof. $\mathcal{C I}$ is localizing

- shows existence of adjunction
- is Dwyer-Kan equivalence at the weak equivalences
must show: smashing
- $P(A) \rightarrow A$ - counit
$-N(A) \rightarrow P(A) \rightarrow A$ cofibre sequence
$-N(A) \in \mathcal{C C}$
- since $\mathrm{KK}^{G}(Q, P(A) \rightarrow A)$ is equivalence for all Q in $\mathcal{C I}$
$-P(A) \simeq P(\mathbf{1}) \otimes A$
$-P(\mathbf{1}) \otimes A \in \mathcal{C I}$ (since $\mathcal{C I}$ is tensor ideal)
- $P(\mathbf{1}) \otimes A \rightarrow A$ is weak equivalence (since $\mathcal{C C}$ is a tensor ideal)

Definition 4.66. The morphism $\alpha: P(\mathbf{1}) \rightarrow \mathbf{1}$ is called the Dirac morphism.
Definition 4.67. The map

$$
\mu_{G, A, B}^{M N}: \operatorname{KK}\left(A, P(B) \rtimes_{r} G\right) \rightarrow \operatorname{KK}\left(A, B \rtimes_{r} G\right)
$$

is called the Meyer-Nest assembly map.
Proposition 4.68. The Mayer-Nest and the Kasparov assembly maps are equivalent.

Proof.

$$
\begin{aligned}
& R \mathrm{KK}^{G}\left(E_{\text {Comp }} G, A, P(B)\right) \xrightarrow{\simeq} R \mathrm{KK}^{G}\left(E_{\mathcal{C o m p} G}, A, B\right)
\end{aligned}
$$

upper horizontal equivalence:
$-R \mathrm{KK}^{G}\left(E_{\text {Comp }} G, A, N(B)\right) \simeq 0$
$-R \mathrm{KK}^{G}\left(E_{\text {Comp }} G, A, N(B)\right)$ is colimit of $\mathrm{KK}^{G}\left(C_{0}(X) \otimes A, N(B)\right)$ for X finite G-CW complex with compact stabilizers
$-\mathrm{kk}^{G}\left(C_{0}(X) \otimes A\right) \in \mathcal{C I}$
right vertical equivalence: Oyono-Oyono (for discrete G), Chabert-Echterhoff for general G

- sketch:
- suffices to show equivalence for $\operatorname{Ind}_{H}^{G}(C)$ in place of B

$$
\operatorname{KK}^{G}\left(C(X) \otimes \operatorname{Res}_{G}(A), \operatorname{Ind}_{H}^{G}(C)\right) \simeq \operatorname{KK}^{H}\left(C\left(\operatorname{Res}_{H}^{G}(X)\right) \otimes \operatorname{Res}_{H}(A), C\right)
$$

- colimit over $X \subseteq \mathcal{E}_{\mathcal{C o m p}} G$ calculates homology of $E_{\mathcal{C o m p}} H \simeq *$
$-\operatorname{KK}^{H}\left(\operatorname{Res}_{H}(A), C\right) \simeq \operatorname{KK}(A, B \rtimes H) \simeq \operatorname{KK}\left(A, \operatorname{Ind}_{H}^{G}(C) \rtimes_{r} G\right)$
- Green imprimitivity
dual Dirac
G - a discrete group

Lemma 4.69. The following assertions are equivalent:

1. There exists $\beta: \mathbf{1} \rightarrow P(\mathbf{1})$ such that $\beta \circ \alpha \simeq \mathrm{id}$.
2. $\mathrm{KK}^{G}(\mathcal{C C}, \mathcal{C I}) \simeq 0$
3. $\mathrm{KK}^{G} \simeq \mathcal{C I} \times \mathcal{C C}$

Definition 4.70. A morphism $\beta: \mathbf{1} \rightarrow P(\mathbf{1})$ as in Lemma 4.69. 1 is called a dual Dirac morphism and the composition $\gamma:=\alpha \circ \beta: \mathbf{1} \rightarrow \mathbf{1}$ is called the γ-element.
one says that G admits a γ-element

Proof. γ is idempotent
$-\gamma \mathcal{C C}=0$

- use $\mathcal{C I} \otimes \mathcal{C C} \simeq 0$
$-(A \rightarrow P(A) \rightarrow A) \otimes \mathcal{C C} \simeq 0$
$-(1-\gamma)_{\mid \mathcal{C I}}=0$
- use: $P(A) \rightarrow A$ is equivalence for $A \in \mathcal{C I}$
- then $A \rightarrow P(A)$ is also equivalence
$-\gamma A=\mathrm{id}_{A}$
$1 \Rightarrow 2$:
$A \in \mathcal{C C}$
- $A=\gamma A+(1-\gamma) A$
- $\gamma A=0$
$-\operatorname{KK}^{G}((1-\gamma) A, \mathcal{C I})=\operatorname{KK}^{G}(A,(1-\gamma) \mathcal{C I})=0$
$2 \Rightarrow 3$
- clear since also $\mathrm{KK}^{G}(\mathcal{C I}, \mathcal{C C}) \simeq 0$
$3 \Rightarrow 1$
$\mathbf{1}$ decomposes $P(\mathbf{1}) \oplus \mathbf{1}_{\mathcal{C C}}$
- take $\beta: \mathbf{1} \rightarrow P(\mathbf{1})$ the projection

Corollary 4.71. If $\gamma=1$, then the Baum-Connes conjecture with coefficients for G holds.

Proof. $\mathrm{KK}^{G} \simeq \mathcal{C} \mathcal{I}$

- $P(A) \rightarrow A$ is identity

Corollary 4.72. If G admits a γ-element, then

$$
\mu_{G, \mathbb{C}, B}^{\text {Kasp }}: \operatorname{RKK}^{G}\left(E_{\mathcal{C o m p}} G, A, B\right) \rightarrow R \mathrm{KK}^{G}\left(E_{\text {Comp }} G, A, B\right)
$$

is split injective.

Proof. $\mu_{G, A, B}^{M N}$ admits a left inverse
injectivity is relevant: implies e.g. Novikov conjecture
Remark 4.73. existence of γ-element is usually shown by providing explicit candidate for β

Theorem 4.74 ([KS03]). If G is discrete, acts isometrically and properly on a weakly bolic, weakly geodesic metric space of bounded coarse geometry, then G admits a γ-element.

- a simply-connected complete non-positvely curved Riemannian manifold of bounded sectional curvature is an example of such a space
- Euclidean buildings with uniformly bounded ramification

4.2.3 The Davis Lück functor

consider
$G_{\text {Comp }} \mathbf{O r b} \rightarrow \operatorname{Mod}(K U)$

- $S \mapsto \mathrm{KK}^{G}\left(C_{0}(S), B\right)$
- value is defined on all of $G \mathbf{O r b}$
- but not functorial for non-proper maps $G / H \rightarrow G / L$, i.e. if L / H is not compact
- value for compact H :

$$
\operatorname{KK}^{G}\left(C_{0}(G / H), B\right) \simeq \mathrm{KK}^{H}\left(\mathbb{C}, \operatorname{Res}_{H}^{G}(B)\right) \simeq K\left(B \rtimes_{r} H\right)
$$

Problem 4.75. Extend this to a functor $G \mathbf{O r b} \rightarrow \operatorname{Mod}(K U)$.

- value at $*$ is $K\left(B \rtimes_{r} G\right)$
- defines equivariant homology theory
in the following describe solution if G is discrete
- first construction due to Davis-Lück DL98 (with corrections by M. Joachim [Joa03])
$G C^{*} \mathbf{C a t}^{\text {nu }}$ - category of C^{*}-categories with G-action
- construct \mathbf{V} : Set $\rightarrow C^{*} \mathbf{C a t}^{\mathrm{nu}}$:
- describe C^{*}-category $\mathbb{C}[S]$:
- objects: elements of s
- morphisms: $\operatorname{Hom}_{\mathbb{C}[S]}\left(s, s^{\prime}\right)=\left\{\begin{array}{cc}\mathbb{C} & s=s^{\prime} \\ 0 & \text { else }\end{array}\right.$
- $f: S \rightarrow S^{\prime}$
- induces obvious functor $s \mapsto f(s)$
go from C^{*}-categories to algebras
have adjunction

$$
A^{f}: C^{*} \mathbf{C a t}^{\mathrm{nu}} \leftrightarrows C^{*} \mathbf{A l g}^{\mathrm{nu}}: \mathrm{incl}
$$

- or with G-action

$$
A^{f}: G C^{*} \mathbf{C a t}^{\mathrm{nu}} \leftrightarrows G C^{*} \mathbf{A l g}^{\mathrm{nu}}: \operatorname{incl}
$$

$-\mathbb{C}[-]: G \mathbf{S e t} \xrightarrow{\mathbf{v}} G C^{*} \mathbf{C a t}^{\mathrm{nu}} \xrightarrow{A^{f}} G C^{*} \mathbf{A l g}^{\mathrm{nu}} \xrightarrow{\mathrm{kk}^{G}} \mathrm{KK}^{G}$
Proposition 4.76. $\mathrm{kk}^{G}(\mathbb{C}[S]) \simeq \mathrm{kk}^{G}\left(C_{0}(S)\right)$

Proof. uses another functor
Re: survey $A: C^{*} \mathbf{C a t}_{\mathrm{inj}}^{\mathrm{nu}} \rightarrow C^{*} \mathbf{A l g}^{\mathrm{nu}}$

- subscript means: functors must be injective on objects
$-A^{0}(\mathbf{C}):=\bigoplus_{C, C^{\prime} \in \mathbf{C}} \operatorname{Hom}_{\mathbf{C}}\left(C, C^{\prime}\right)$
- matrix multiplication
- is a pre- C^{*}-algebra
- $A(\mathbf{C})$ - closure of $A^{0}(\mathbf{C})$
- $A^{f} \rightarrow A$ - natural transformation (by universal property of A^{f})

Proposition 4.77 (M. Joachim Joa03). $\mathrm{kk}^{G}\left(A^{f}(\mathbf{C})\right) \rightarrow \mathrm{kk}^{G}(A(\mathbf{C}))$ is an equivalence.
$A(\mathbb{C}[S]) \cong C_{0}(S)$

- not natural in S
- left-hand side is covariant
- right hand side is contravariant

Definition 4.78. We define the Davis-Lück functor

$$
K_{G, B}^{D L}: G \mathbf{O r b} \rightarrow \mathrm{KK}^{G}
$$

by

$$
\begin{gathered}
K_{G, B}^{D L}: G \text { Orb } \xrightarrow{\mathbb{C}[-]} G C^{*} \mathbf{C a t}^{\mathrm{nu}} \xrightarrow{\mathrm{kk}^{G}} \mathrm{KK}^{G} \xrightarrow{-\otimes B} \mathrm{KK}^{G} \xrightarrow{-\rtimes_{r} G} \mathrm{KK} \\
\mathrm{~K}_{G, B}^{D L}:=\mathrm{KK}\left(-, K_{G, B}^{D L}\right)
\end{gathered}
$$

absolute version
Theorem 4.79. There is an equivalence

$$
\left(\mathrm{K}_{G, B}^{D L}\right)_{\mid G_{\mathrm{Fin}} \mathrm{Orb}} \simeq \mathrm{KK}^{G}\left(C_{0}(-), B\right)_{\mid G_{\mathrm{Fin}} \mathrm{Orb}}
$$

Proof. this is a version of Paschke duality BELa]
assume: H compact, discrete

$$
\begin{array}{r}
\mathrm{K}_{G, B}^{D L}(G / H) \simeq \mathrm{KK}\left(\mathbb{C},(\mathbb{C}[G / H] \otimes B) \rtimes_{r} G\right) \simeq \operatorname{KK}\left(\mathbb{C},\left(\operatorname{Ind}_{H}^{G}(\mathbb{C}) \otimes B\right) \rtimes_{r} G\right) \\
\simeq \operatorname{KK}\left(\mathbb{C},\left(\operatorname{Ind}_{H}^{G}\left(\operatorname{Res}_{H}^{G}(B)\right) \rtimes_{r} G\right) \simeq \operatorname{KK}\left(\mathbb{C}, \operatorname{Res}_{H}^{G} B \rtimes H\right)\right. \\
\simeq \operatorname{KK}^{H}\left(\operatorname{Res}_{H} \mathbb{C}, \operatorname{Res}_{H}^{G} B\right) \simeq \operatorname{KK}^{G}\left(C_{0}(G / H), B\right)
\end{array}
$$

- suffices to construct this equivalence natural in G / H
- is not easy

Corollary 4.80. $\mathrm{K}_{G, B}^{D L} \simeq R \mathrm{~K}_{G, B}$ on G-CW-complexes with compact stabilizers
$\mathrm{K}_{G, B}^{D L}$ represents an equivariant homology theory

- $\mathrm{K}_{G, B}^{D L} \simeq R \mathrm{~K}_{G, B}$ on G-CW-complexes with compact stabilizers
discuss now Davis-Lück assembly map
- $E: G \mathbf{O r b} \rightarrow \mathbf{M}$ any functor
- M cocomplete
- \mathcal{F} - any family of subgroups
$-i: G_{\mathcal{F}} \mathrm{Orb} \rightarrow G \mathbf{O r b}$ - inclusion
- have adjunction $i_{!}: \operatorname{Fun}\left(G_{\mathcal{F}} \mathbf{O r b}, \mathbf{M}\right) \leftrightarrows \operatorname{Fun}(G \mathbf{O r b}, \mathbf{M}): i^{*}$
- have counit $i!i^{*} E \rightarrow E$

Definition 4.81. The map $\mathrm{Asmb}_{\mathcal{F}, E}: i_{!} E(*) \rightarrow E(*)$ is called the Davis-Lück assembly map associated to E and \mathcal{F}
$\operatorname{Asmb}_{\mathcal{F}, E}: \operatorname{colim}_{S \in G_{\mathcal{F}} \mathrm{Orb}} E(S) \rightarrow E(*)$

- in terms of homology theory
$E\left(E_{\mathcal{F}} G\right) \rightarrow E(*)$ induced by $E_{\mathcal{F}} G \rightarrow *$
Theorem 4.82 (Kra20], BELa). The Kasparov and Davis-Lück assembly maps are equivalent.

study dependence on B
$-K_{G}: \mathrm{KK}^{G} \rightarrow \operatorname{Fun}(G \mathbf{O r b}, \mathrm{KK})$
- $B \mapsto K_{G, B}^{D L}$
$i_{H}^{G}: H \mathrm{Orb} \rightarrow G \mathbf{O r b}$ - induction functor
$-i_{H}^{G}(S):=G \rtimes_{H} S$
Theorem 4.83 ([Kra20], BELa]). For any subgroup H of G we have a commutative square

Corollary 4.84.

Corollary 4.85. If $\mathrm{Asmb}_{\mathbf{F i n}, \mathrm{K}_{G, \mathrm{C}, B}^{D L}}$ is an equivalence for all B in KK^{G}, then $\mathrm{Asmb}_{\mathbf{F i n}, \mathrm{K}_{H, C, A}^{D L}}$ is an equivalence for all A in KK^{H}.

The Baum-Connes conjecture with coefficients is inherited by subgroups.

4.3 The index class

4.3.1 $K K$-theory for graded algebras

in order construct index classes of Dirac operators naturally need graded C^{*}-algebras and corresponding $K K$-theory
we first introduce the corresponding structures

- we consider complex G - C^{*}-algebras
- we will interpret C_{2}-graded G - C^{*}-algebras as $G_{2}:=G \times C_{2}$-equivariant C^{*}-algebras
- the tensor product is modified to $\hat{\otimes}$
- Koszul sign rules
consider $G_{2} C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- $A \in G_{2} C^{*} \mathbf{A l g}^{\mathrm{nu}}$
- have the following structure
- $\sigma \in C_{2}$ - non-trivial element
- $A \cong A_{0} \oplus A_{1}$ as \mathbb{C}-vector space, eigenspace decomposition for σ
- A_{0} - eigenvalue 1
- A_{1} - eigenvalue -1
- write elements as $a_{0}+a_{1}$
- A_{0} is subalgebra
$-A_{1} A_{0} \subseteq A_{1}, A_{0} A_{1} \subseteq A_{1}$
$-A_{1} A_{1} \subseteq A_{0}$
graded tensor product on $G_{2} C^{*} \mathbf{A l g}^{\mathrm{nu}}$:
change symmetry:
$-\hat{\otimes}^{\mathrm{alg}}: G_{2} C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow G_{2}{ }^{*} \mathbf{A l g}_{\mathbb{C}}^{\mathrm{nu}}$
- underlying bifunctor on \otimes
- symmetry: $s_{A, B}: A \hat{\otimes}^{\text {alg }} B \rightarrow B \hat{\otimes}^{\text {alg }} A$:

$$
\left.s_{A, B}\left(\left(a_{0}+a_{1}\right) \otimes b_{0}+b_{1}\right)\right)=\left(b_{0} \otimes a_{0}-b_{1} \otimes a_{1}\right)+\left(b_{1} \otimes a_{0}+b_{0} \otimes a_{1}\right)
$$

- this is the tensor product imported from C_{2}-graded vector spaces
- unit, associator and relations imported, so do not have to check
now check: $A \hat{\otimes}^{\text {alg }} B$ is G_{2}-pre C^{*}-algebra
- form minimal or maximal completion
- yields $\hat{\otimes}_{\text {min }}$ and $\hat{\otimes}_{\text {max }}$

Lemma 4.86. The functor $\mathrm{kk}^{G_{2}}: G_{2} C^{*} \operatorname{Alg}^{\mathrm{nu}} \rightarrow \mathrm{KK}^{G_{2}}$ has a symmetric monoidal refinement for $\hat{\otimes}$.

Proof. need first to descend $\hat{\otimes}$ to $\mathrm{KK}_{\text {sep }}^{G_{2}}$

- then extend to $\mathrm{KK}^{G_{2}}$
- consider to version: minimal and maximal
- it is bicontinuous
- hence descends to homotopy localization
- it is associative
- hence descends to $\mathbb{K}_{G_{2}}$-stabilization

Lemma 4.87.

1. $\hat{\otimes}_{\text {? }}$ is semi-exact for semiexact sequences of graded algebras for $? \in\{\min , \max \}$.
2. $\hat{\otimes}_{\max }$ is exact.

Proof. exercise

- $\hat{\otimes}$ descends to semiexact localization
$\hat{\otimes}$ preserves group objects
- by associativity
- $\hat{\otimes}$ descends to $\mathrm{KK}_{\text {sep }}^{C_{2}}$
tensor unit of $\hat{\otimes}$ is \mathbb{C}
- trivially graded
now extend along Ind-completion
- arguments as in the ungraded case
have functor
$\operatorname{Res}_{G_{2}}^{G}: \mathrm{KK}^{G} \rightarrow \mathrm{KK}^{G_{2}}$
- is symmetric monoidal

Example 4.88 (Examples of graded C^{*}-algebras).
\mathbb{C} with the trivial grading

- is the tensor unit of $\hat{\otimes}$
$\operatorname{Mat}_{2}(\mathbb{C})$
- $2 x 2$-matrices with even odd grading
- is $\operatorname{End}\left(\mathbb{C} \oplus \mathbb{C}^{\text {op }}\right)$

Clifford algebra
$-\mathrm{Cl}^{1} \cong \mathbb{C}[\sigma] /\left(\sigma^{2}=1\right)$
$-\operatorname{deg}(\sigma)=1$
$-\sigma^{*}=\sigma$

- is isomorphic to $C^{*}\left(\hat{C}_{2}\right)$ as C_{2}-algebra

Lemma 4.89. We have an isomorphism $\mathrm{Cl}^{1} \hat{\otimes} \mathrm{Cl}^{1} \cong \operatorname{Mat}_{2}(\mathbb{C})$ in $G_{2} C^{*} \operatorname{Alg}^{\mathrm{nu}}$.

Proof. - generators are τ and σ

- let σ act on Cl^{1} by left multiplication
- let τ act by $i z \sigma$ (z the grading operator)
$-i z \sigma^{*}=-i \sigma z=i z \sigma$
$-\tau \sigma+\sigma \tau=i z \sigma \sigma+\sigma i z \sigma=i z-i z=0$
$-\tau \sigma=i z \sigma \sigma=i z$
$-1=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$-\tau \sigma=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right)$
$-\sigma=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
$-\tau=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$

\hat{S}

- C_{2} acts on \mathbb{R} by multiplication by -1
- $\hat{S}:=C_{0}(\mathbb{R})$ with induced action in $C_{2} C^{*} \mathbf{A l g}{ }^{\mathrm{nu}}$
- have semisplit exact sequence

$$
0 \rightarrow C_{0}((0, \infty)) \otimes \mathrm{Cl}^{1} \rightarrow \hat{S} \xrightarrow{\epsilon} \mathbb{C} \rightarrow 0
$$

$-\epsilon: \hat{S} \rightarrow \mathbb{C}$ is $f \mapsto f(0)$
$-C_{0}(0, \infty) \otimes \mathrm{Cl}^{1} \rightarrow \hat{S}$ sends $f_{0}+\sigma f_{1}$ to $t \mapsto f_{0}(|t|)+\operatorname{sign}(t) f_{1}(|t|) \hat{S}$ is represented on $L^{2}(\mathbb{R})$

- as multiplication operator
- Hilbert space again with flip action
\hat{S} is a coalgebra
counit:
$\epsilon: \hat{S} \rightarrow \mathbb{C}$ - evaluation at 0
$\hat{S} \hat{\otimes} \hat{S}$ acts on $L^{2}(\mathbb{R}) \hat{\otimes} L^{2}(\mathbb{R})$
- this is $L^{2}(\mathbb{R}) \hat{\otimes} L^{2}(\mathbb{R}) \cong L^{2}\left(\mathbb{R}^{2}\right)$ with the grading given by the flip action again
- define $\Delta: \hat{S} \rightarrow \hat{S} \hat{\otimes} \hat{S}$
- formally $f(x) \mapsto f(x \hat{\otimes} 1+1 \hat{\otimes} x)$
\mathbb{R}^{2} has coordinates x_{0}, x_{1}
- on $L^{2}\left(\mathbb{R}^{2}\right)$ have operators
- x_{0}, x_{1} - multiplication by coordinates
- have operators z_{0}, z_{1} - grading operators
- $z_{i} \phi= \pm \phi$ depending on whether ϕ is even or odd in x_{i}
$-z_{0} \phi\left(x_{0}, x_{1}\right):=\frac{1}{2}\left(\left(\phi\left(x_{0}, x_{1}\right)+\phi\left(-x_{0}, x_{1}\right)\right)-\left(\phi\left(x_{0}, x_{1}\right)-\phi\left(-x_{0}, x_{1}\right)\right)\right.$
- z_{1} analogous
- define $\hat{x}_{0}:=x_{0}$
- $\hat{x}_{1}:=z_{0} x_{1}$
- then
$-\hat{x}_{0} \hat{x}_{1}+\hat{x}_{1} \hat{x}_{0}=0$
- consider unbounded odd operator $\hat{x}_{0}+\hat{x}_{1}$ on $L^{2}\left(\mathbb{R}^{2}\right)$
- is selfadjoint
- define $\hat{S} \rightarrow B\left(L^{2}\left(\mathbb{R}^{2}\right)\right)$
- $f \mapsto f\left(\hat{x}_{0}+\hat{x}_{1}\right)$ by functional calculus
- this takes values in $\hat{S} \hat{\otimes} \hat{S}$
$\Delta: \hat{S} \rightarrow \hat{S} \hat{\otimes} \hat{S}$ is coproduct
obvious: $\epsilon \otimes$ id : $\hat{S} \rightarrow \hat{S} \hat{\otimes} \hat{S} \rightarrow \hat{S}$ is identity
$-x \mapsto \hat{x}_{0}+\hat{x}_{1} \rightarrow x$
Lemma 4.90. ($\hat{S}, \epsilon, \Delta$) is a commutative coalgebra in $C_{2} C^{*} \mathbf{A l g}^{\mathrm{nu}}$.
Definition 4.91. We define $\hat{\mathrm{KK}^{G}} \quad:=\operatorname{Comod}_{\mathrm{KK}^{G_{2}}}\left(\mathrm{kk}^{G}(\hat{S})\right)$
have functor
$\mathrm{KK}^{G_{2}} \rightarrow \hat{\mathrm{KK}}^{G}, \quad A \mapsto \hat{S} \hat{\otimes} A$ - free comodule define $\hat{\mathrm{kk}}^{G}: G_{2} C^{*} \mathbf{A l g}^{\mathrm{nu}} \rightarrow \hat{\mathrm{KK}}^{G}$ as composition

$$
\hat{\mathrm{kk}}^{G}: G_{2} C^{*} \mathrm{Alg}^{\mathrm{nu}} \xrightarrow{\mathrm{kk}^{G_{2}}} \mathrm{KK}^{G_{2}} \xrightarrow{\hat{\mathrm{~S}} \hat{\mathrm{~A}}-} \hat{\mathrm{KK}}^{G}
$$

Corollary 4.92. $\hat{\mathrm{KK}}^{G}(A, B) \simeq \operatorname{KK}^{G_{2}}(\hat{S} \otimes A, B)$.
this is here consequence of definition

- in the classical literature $\hat{K K}_{*}^{G}(A, B)$ was define by Kasparov in terms of cycles and relations
- this formula is then a theorem by U. Haag [Haa99, Thm. 3.8]
$\hat{k}^{G}{ }^{G}$ is symmetric monoidal functor
- comparison with ungraded case

i from universal property of kk^{G}
- is symmetric monoidal

Proposition 4.93. i is fully faithful.

Proof.

$$
\begin{aligned}
\hat{\mathrm{KK}}^{G}(i(A), i(B)) & \simeq \operatorname{map}_{\operatorname{Comod}(\hat{S})}(\hat{S} \hat{\otimes} A, \hat{S} \hat{\otimes} B) \\
& \simeq \operatorname{KK}^{G_{2}}\left(\hat{S} \hat{\otimes} A, \operatorname{Res}_{G_{2}}^{G} B\right) \\
& \simeq \operatorname{KK}^{G}\left(\left(\hat{S} \rtimes C_{2}\right) \otimes A, B\right) \\
& \simeq \operatorname{KK}^{G}(A, B)
\end{aligned}
$$

to this end show that $\hat{S} \rtimes C_{2} \simeq \mathbf{1}$

- use exact sequence in $C_{2} C^{*} \mathbf{A l g}^{\mathrm{nu}}$

$$
0 \rightarrow C_{0}((0, \infty)) \hat{\otimes} \mathrm{Cl}^{1} \rightarrow \hat{S} \rightarrow \mathbb{C} \rightarrow 0
$$

- induces exact sequence in $C^{*} \mathrm{Alg}^{\mathrm{nu}}$

$$
0 \rightarrow\left(C_{0}((0, \infty)) \hat{\otimes} \mathrm{Cl}^{1}\right) \rtimes C_{2} \rightarrow \hat{S} \rtimes C_{2} \rightarrow \mathbb{C} \rtimes C_{2} \rightarrow 0
$$

- all algebras in bootstrap class
- apply K-theory
- discuss long exact sequence and show that

$$
K_{*}\left(\hat{S} \rtimes C_{2}\right) \cong \begin{cases}\mathbb{Z} & *=0 \\ 0 & *=1\end{cases}
$$

- conclude $\operatorname{kk}\left(\hat{S} \rtimes C_{2}\right) \simeq \mathbf{1}$

Lemma 4.94. In $\hat{\mathrm{KK}}^{G}$ we have equivalence $S(\mathbb{C}) \simeq \mathrm{Cl}^{1}$.

4.3.2 The index class

locally finite K-homology captures index classes
X - metric space with G-action by isometries

- H separable Hilbert space with unitary G-action
- $\phi: C_{0}(X) \rightarrow B(H)$ equivariant homomorphism

Definition 4.95. The pair (H, ϕ) is called an equivariant X-controlled Hilbert space.

Example 4.96.

choose G-invariant measure μ on X

- $H:=L^{2}(X, \mu)$
- G-action by translations
- is isometric since μ is invariant
- $\phi: C_{0}(X) \rightarrow B(H)$ - action by multiplication operators
(H, ϕ) is equivariant X-controlled Hilbert space
fix (H, ϕ) - equivariant X-controlled Hilbert space
- consider A in $B(H)^{G}$ - G-invariant operator

Definition 4.97. The operator A is called controlled if there exists $R>0$ such that if for all f, f^{\prime} in $C_{0}(X)$ with $d\left(\operatorname{supp}(f), \operatorname{supp}\left(f^{\prime}\right)\right)>R$, we have $\phi(f) A \phi\left(f^{\prime}\right)=0$. The infimum of these R is called the propagation of A.

Definition 4.98. A is locally compact if $\phi(f) A, A \phi(f) \in K(H)$ for all f in $C_{0}(X)$.
Example 4.99 (integral operators).
consider continuous function $k: X \times X \rightarrow \mathbb{C}$

- G-invariant: $k(g x, g y)=k(x, y)$ for all x, y in X and g in G
- assume k defines bounded integral operator on $L^{2}(X, \mu)$:
$-(A \psi)(x):=\int_{X} k(x, y) \psi(y) \mu(y)$
$-A \in B(H)^{G}$
- the boundedness condition is complicated in general
- but here is a simple case: if X / G is compact, then A is defined
- A is locally compact
- e.g.: $\phi(f) A$ factorizes as $L^{2}(X, \mu) \rightarrow C_{\text {supp }(f)}(U) \rightarrow L^{2}(X, \mu)$
- second map is compact
- first map is bounded (uses continuity of of k and finite propagation)
- hence A is locally compact
- assume: $k(x, y)=0$ for $d(x, y) \geq R$
- then A is controlled with propagation R

Definition 4.100. We define the Roe algebra $C^{*}(X, H, \phi)^{G}$ to be the C^{*}-algebra generated by the controlled and locally compact operators on H.

Remark 4.101. in our example: the Roe algebra is generated by integral operators as above

Definition 4.102. The equivariant X-controlled Hilbert space (H, ϕ) is called ample if it absorbs any other X-controlled Hilbert space by a controlled equivariant unitary inclusion.
this means:

- if $\left(H^{\prime}, \phi^{\prime}\right)$ is any X-controlled Hilbert space, then there exists isometry $U: H^{\prime} \rightarrow H$ such that U is controlled

Remark 4.103 (existence of ample X-controlled Hilbert spaces).
G trivial

- assume: $X=\operatorname{supp}(\mu)$
- then $\left(L^{2}(X, \mu) \otimes \ell^{2}, \phi \otimes \mathrm{id}_{\ell^{2}}\right)$ is ample
- if there exists $R>0$ such that $\operatorname{dim}\left(L^{2}(B(R, x), \mu)\right)=\infty$ for all x in X, then $\left(L^{2}(X, \mu), \phi\right)$ itself is ample
- for non-trivial G :
- it is more complicated [BE17, Prop. 4.2]
- requires assumptions on X

Proposition 4.104 ($\overline{\mathrm{BE} 17}$, Prop. $8.1+4.2]$). If X is the underlying metric space of a complete Riemannian G-manifold with a proper G-action, then X admits an equivariant ample X-controlled Hilbert space.
assume: (H, ϕ) is ample
$C^{*}(X, H, \phi)^{G}$ contains any other $C^{*}\left(X, H^{\prime}, \phi^{\prime}\right)^{G}$ as corner

- full corner if $\left(H^{\prime}, \phi^{\prime}\right)$ is also ample
- $K\left(C^{*}(X, H, \phi)^{G}\right)$ is then independent of (H, ϕ)

Definition 4.105. $K \mathcal{X}(X):=K\left(C^{*}(X, H, \phi)^{G}\right.$ is called the coarse K-homology of X.
Remark 4.106 (relation with equivariant coarse K-homology).
for details: BE17, Sec. 5], [BE23]

- there exists an equivariant coarse homology theory

$$
K \mathcal{X}^{G}: G \mathbf{B C} \rightarrow \operatorname{Mod}(K U)
$$

- G BC - category of G-bornological coarse spaces
- a metric space X with isometric G-acation represents an object of $G \mathbf{B C}$
assume X is very proper (e.g. underlying metric space of a complete Riemannian G manifold with a proper G-action)
- then X admits an ample equivariant X-controlled $\operatorname{Hilbert}$ space (H, ϕ)
- $K\left(C^{*}(X, H, \phi)\right) \simeq K \mathcal{X}^{G}(X)$
- $f: X \rightarrow X^{\prime}$ a proper controlled map
- controlled means: for all $S>0$ exists $R>0$ such that $d(x, y)<S$ implies $d^{\prime}(f(x), f(y))<$ R.
- induces morphism in GBC
- by functoriality get
$-f_{*}: K \mathcal{X}(X) \rightarrow K \mathcal{X}\left(X^{\prime}\right)$
functoriality cam be described in terms Roe algebras
- (H, ϕ) is X-controlled
- $f_{*}(H, \phi):=\left(H, \phi \circ f^{*}\right)$ is X^{\prime}-controlled
- f_{*} induced by $C^{*}(X, H, \phi)^{G} \rightarrow C^{*}\left(X^{\prime}, H, \phi \circ f_{*}\right) \xrightarrow{U_{*}} C^{*}\left(X^{\prime}, H^{\prime}, \phi^{\prime}\right)$
- for choice of ample $\left(H^{\prime}, \phi^{\prime}\right)$
- for $U:\left(H, \phi \circ f^{*}\right) \rightarrow\left(H^{\prime}, \phi^{\prime}\right)$ controlled

Example 4.107 (Clifford algebras).
V - an Euclidean vector space
$-\mathrm{Cl}(V)-C^{*}$-algebra generated by V under $v w+w v=-2\langle v, w\rangle$ and $v^{*}=-v$

- is C_{2}-graded such that v in V is odd
$-\mathrm{Cl}^{n}:=\operatorname{Cl}\left(\mathbb{R}^{n}\right)$
G - compact Lie group
- V - finite-dimensional unitary G-representation

Proposition 4.108 (Kasparov). In $\hat{\mathrm{KK}}^{G}$ we have $\hat{\mathrm{kk}}^{G}\left(C_{0}(V)\right) \simeq \hat{\mathrm{kk}}{ }^{G}(\mathrm{Cl}(V))$
$\hat{\mathrm{KK}}_{0}^{G}\left(A \otimes \mathrm{Cl}^{n}, B\right) \simeq \hat{\mathrm{KK}}_{0}^{G}\left(A \otimes C_{0}\left(\mathbb{R}^{n}\right), B\right) \simeq \mathrm{KK}_{-n}^{G}(A, B)$
M complete Riemannian manifold with isometric G-action
Definition 4.109. An equivariant degree n Dirac bundle on M is a C_{2}-graded bundle of Cl^{n}-right modules $E \rightarrow M$ with a metric and a connection ∇^{E} and a bilinear map $c: T^{*} M \otimes E \rightarrow E$ (the Clifford multiplication) such that

1. For Y in $T_{m}^{*} M$ the map $c(Y): E_{m} \rightarrow E_{m}$ is odd and Cl^{n}-linear.
2. $c(Y)^{*}=-c(Y)$ and $c(Y)^{2}=-\|Y\|$
3. ∇^{E} is hermitean, grading-preserving, and $\left[\nabla_{X}^{E}, c(Y)\right]=c\left(\nabla_{X}^{L C} Y\right)$ (compatibility with Levi-Civita connection)
4. For v in \mathbb{R}^{n} the right-multiplication $\cdot v$ is odd, parallel, and satisfies $v^{*}=-v$.
5. All structures a G-invariant

Example 4.110 ($S^{\text {pin }}{ }^{c}$ Dirac operator).
define Lie group $\operatorname{Spin}^{c}(n)$
$-\mathrm{Cl}^{n} \cong \mathrm{Cl}\left(\mathbb{R}^{n}\right)$

- $S O(n)$ acts on \mathbb{R}^{n}
- Spin $^{c} \subseteq \mathrm{Cl}^{n, *}$
- subgroup of unitaries generated by $U(1) 1_{\mathrm{C1}^{n}}$ and $x y$ for unit vectors x, y in \mathbb{R}^{n}
construct Spin $^{c} \rightarrow S O(n)$
- $u \mapsto u-u^{*}$
- preserves subspace $\mathbb{R}^{n} \subseteq \mathrm{Cl}^{n}$
- have exact sequence

$$
0 \rightarrow U(1) \rightarrow \operatorname{Spin}^{c}(n) \rightarrow S O(n) \rightarrow 0
$$

M - oriented manifold

- $P \rightarrow M$ - $S O(n)$-principal bundle of oriented frames

Definition 4.111. A Spin ${ }^{c}$-structure is a reduction of structure groups of P to $\operatorname{Spin}^{c}(n)$
in detail: it is given by:

- $Q^{c} \rightarrow M$ - a Spin c-principal bundle
- an isomorphism $Q^{c} \times{ }_{\operatorname{Spin}^{c}(n)} S O(n) \cong P$
- $S^{c}:=Q^{c} \times{ }_{\text {Spinc }} \mathrm{Cl}^{n}$ is bundle of right Cl^{n}-modules
- have $\left(\mathbb{R}^{n}\right)^{*} \otimes \mathrm{Cl}^{n} \rightarrow \mathrm{Cl}^{n}$ - left multiplication (and dualization using metric)
- induces Clifford multiplication $c: T M^{*} \otimes S^{c} \rightarrow S^{c}$ induced by left multiplication
- choose connection $\nabla^{S^{c}}$ on S^{c} which refines Levi-Civita connection

Proposition 4.112. $\left(S^{c}, \nabla^{S^{c}}, c\right)$ is a Dirac bundle of degree $\operatorname{dim}(M)$.
$\operatorname{Spin}(n) \subseteq \operatorname{Spin}^{c}(n)$ - a two-fold covering of $S O(n)$
Definition 4.113. A Spin structure is a reduction of the structure group of Q^{c} to $\operatorname{Spin}(n)$.

- get Dirac bundle $S:=Q \times_{\operatorname{Spin}(n)} \mathrm{Cl}^{n}$
- has an additional real structure
- in this case ∇^{S} is unique: called the Spin connection
concider Dirac bundle $\left(E, c, \nabla^{E}\right)$ of degree n

Definition 4.114. The Dirac operator associated to the Dirac bundle is defined as the composition

$$
D:=c \circ \nabla: \Gamma(S) \rightarrow \Gamma\left(M, T^{*} M \otimes S\right) \rightarrow \Gamma(S)
$$

- it is Cl^{n}-linear
first order G-invariant Differential operator
- $\sigma(D)^{2}(\xi)=\|\xi\|^{2}$

Lemma 4.115. D is formally selfadjoint on $L^{2}(M, E)$
an unbounded operator is essentially selfadjoint if its closure is selfadjoint
Lemma 4.116. D is essentially selfadjoint with domain $\Gamma_{0}(X, S)$ on $H:=L^{2}(X, S)$
consider $H:=L^{2}(M, E)$ as equivariant M-controlled Hilbert space

- can form $e^{i t D}$ - wave operator, unitary in $B(H)^{G}$

Theorem 4.117 (finite propagation speed). $e^{i t D}$ is controlled with propagation $|t|$
$f \in C_{0}(\mathbb{R})$

- assume $\hat{f} \in C_{c}(\mathbb{R})$
$-\operatorname{fix} R$ with $\operatorname{supp}(\hat{f}) \subseteq[-R, R]$
- $\hat{f}(\xi):=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(t) e^{-i t \xi} d t$
- $f(D)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \hat{f}(t) e^{i t D} d t$ has propagation R
- $f(D)$ is G-invariant
- $f(D)$ is locally compact by Rellichs theorem
- conclude: $f(D) \in C^{*}(M, H, \phi)^{G}$
by density: $f(D) \in C^{*}(M, H, \phi)^{G}$ for any f in $C_{0}(\mathbb{R})$
- get homomorphism $\hat{S} \rightarrow C^{*}(M, H, \phi)^{G}$
- extends to $i(D): \hat{S} \hat{\otimes} \mathrm{Cl}^{n} \rightarrow C^{*}(M, H, \phi)^{G}$

Definition 4.118. The class of $i(D)$ in $\operatorname{KK}\left(\hat{S} \hat{\otimes} \mathrm{Cl}^{n}, C^{*}(M, H, \phi)^{G}\right) \cong \hat{K}_{-n}\left(C^{*}(M, H, \phi)^{G}\right)$ is called the equivariant coarse index class index $\mathcal{X}(D)$ of D.
if G acts properly, then index $\mathcal{X} \in K \mathcal{X}_{-n}^{G}(M)$ naturally
Example 4.119. special case:

- M compact
- G trivial
$-C^{*}(M, H, \phi)^{G} \cong K$
- get class index $\mathcal{X}(D)$ in $K_{-n}(K) \cong\left\{\begin{array}{cc}\mathbb{Z} & n \text { even } \\ 0 & n \text { odd }\end{array}\right.$
this is usual index of Dirac operator
Definition 4.120 (Atiyah-Singer). The index of the Spin-Dirac operator is given by $\langle\hat{A}(T M),[M]\rangle$.
here $\hat{A}(T M)$ - a characteristic class of $T M$
- can be expressed in terms of Pontrjagin classes (Chern class of $T M \otimes \mathbb{C}$)
there is a similar formula for the general case:
$-E \cong S \otimes V$
- for V - an auxiliary bundle (with metric and connection)
- index $\mathcal{X}\left(D^{E}\right)=\langle\hat{A}(T M) \cup \mathbf{C h}(V),[M]\rangle$
see BGV04 for details
Remark 4.121 (the K-homology class of a Dirac operator).
there is a more basic class $[D] \in \operatorname{KK}^{G}\left(C_{0}(M) \otimes \mathrm{Cl}_{n}, \mathbb{C}\right)$
- it is called the K-homology class of D
- is a class in $\mathrm{K}_{\mathbb{C},-n}^{G}(M)$
represented by a graded Kasparov module $\left(L^{2}(M, E), F, \phi\right)$
- $\phi: C_{0}(M) \otimes \mathrm{Cl}^{n} \rightarrow B(H)$ action by multiplication operators
$-F:=\frac{D}{\sqrt{1+D^{2}}}$
- use Mey00, Sec. 5 and 7] in order translate Kasparov modules to maps from $\hat{S} \hat{\otimes} C_{0}(M) \otimes$ Cl^{n} to $B(H)$
the coarse way:
$K \mathcal{X}_{-n-1}^{G}\left(\mathcal{O}^{\infty}(M)\right) \simeq \mathrm{K}_{\mathbb{C},-n}^{G}(M)$
- $\mathcal{O}^{\infty}(M)=\mathbb{R} \times M$
- warped product metric
- $\tilde{g}=d t^{2}+f(t) g, f(t)=1$ for $t<0$ and $f(t)=t^{2}$ for $t \gg 0$
- canonical \tilde{D} extension of D
- a selfadjoint deformation of $e_{n+1} \partial_{t}+D$
- is Cl_{n+1}-equivariant
$[D]$ corresponds to index $\mathcal{X}(\tilde{D})$ under isomorphism above
- for details on this approach: Bun18
back to the general case:
- D for a Dirac bundle

Lemma 4.122. If the spectrum of D has a gap at 0 , the $\operatorname{index} \mathcal{X}(D)=0$.

Proof. assume gap at 0

- $f(D)$ does not depend on values of f near 0
- $f \mapsto f(D)$ extends from $f \in C_{0}(\mathbb{R})$ to $C_{0}(-\infty, 0] \oplus C_{0}[0, \infty)$
$-\hat{K K}\left(C_{0}(-\infty, 0] \oplus C_{0}[0, \infty) \otimes \mathrm{Cl}_{n}, C^{*}(M, H, \phi)^{G}\right)=0$
- since $C_{0}(-\infty, 0] \oplus C_{0}[0, \infty)$ is contractible

Example 4.123 (application to spin Dirac operator).
M - oriented Riemannian complete spin

- G acts by automorphisms
- D - spin Dirac operator
- $D^{2}=\Delta+\frac{s}{4}$ (Lichnerowicz formula)
- s - scalar curvature function
- if $s \geq c>0$, then $\sigma(D) \cap(-c, c)=\emptyset$
- index $\mathcal{X}(D)=0$

Remark 4.124. index $\mathcal{X}(D)$ only depends on the smooth spin manifold and coarse class of the metric

- if index $\mathcal{X}(D) \neq 0$, then there is no metric with uniformly positive scalar curvature on the coarse equivalence class

Example 4.125. \mathbb{R}^{n} with flat metric

- known: index $\mathcal{X}(D) \neq 0$
- construct non-trivial pairings with K-theory classes on Higson corona
- see Bun23, Ex. 7.6]
- there is no metric in the coarse class of the flat metric of uniformly positive scalar curvature
every \mathbb{Z}^{n}-periodic metric is in this class
Corollary 4.126. T^{n} does not admit a metric of positive scalar curvature
Remark 4.127. M compact spin
- $\operatorname{index} \mathcal{X}(D)=\langle\hat{A}(T M),[M]\rangle$ is a smooth invariant of M
- does not depend on metric
- $\alpha(M) \neq 0$ obstructs the existence of metric with positive scalar curvature

Example 4.128 (coarse K-theory of free cocompact G-spaces).
assume:

- G acts cocompactly and freely on X
- (H, ϕ) - ample

Lemma 4.129. $C^{*}(X, H, \phi)^{G} \cong C_{r}^{*}(G) \otimes K$
$K \mathcal{X}^{G}(X) \cong K\left(C_{r}^{*}(G)\right.$
a formal way to see this:

- $G_{c a n, \min } \rightarrow X, g \mapsto g x_{0}$ is a coarse equivalence
- $K \mathcal{X}^{G}\left(G_{\text {can,min }}\right) \simeq K\left(C_{r}^{*}(G)\right)$ by explicit calculation

4.3.3 Consequences of the Baum-Connes conjecture

for more information see: MV03, [GAJV19,
Example 4.130 (The Gromov-Lawson-Rosenberg conjecture).
G - a group

- M closed connected Spin-manifold with $\pi_{1}(M)=G$
$-n:=\operatorname{dim}(M)$
- $\bar{M} \rightarrow M$ universal covering
- choose metric on M
- get G-invariant metric on \bar{M}
- $\bar{D}^{\text {spin }}$ - Spin-Dirac operator
- indexX $\mathcal{X}\left(\bar{D}^{\text {spin }}\right) \in K \mathcal{X}_{-n}(\bar{M}) \cong K_{-n}\left(C_{r}^{*}(G)\right)$
since work with spin: all this has real version
- define $\alpha_{G}(M):=\operatorname{index} \mathcal{X}\left(\bar{D}^{\text {spin }}\right) \in K O_{-n}\left(C_{r, \mathbb{R}}^{*}(G)\right)$

Corollary 4.131. If M admits psc-metric, then $\alpha_{G}(M)=0$.
Conjecture 4.132 (Gromov-Lawson-Rosenberg). If $\alpha_{G}(M)=0$, then M admits a psc metric.
has counter examples by Th. Schick
need modification:

- consider Bott manifold B :
- compact, $\operatorname{spin}, \operatorname{dim}(B)=8, \pi_{1}(B)=1$
- index $\mathcal{X}\left(D_{B}^{\text {spin }}\right)=\beta_{\mathbb{R}} \in K O_{-8}(\mathbb{R})$ Bott element - invertible element
- $\alpha_{G}(M) \beta_{\mathbb{R}}=\alpha_{G}(M \times B)$

Conjecture 4.133 (modified Gromov-Lawson-Rosenberg conjecture). If $\alpha_{G}(M)=0$, then $M \times B^{d}$ admits a psc metric for sufficiently large d.
have map equivariant map $f: \bar{M} \rightarrow E G$

- unique up to homotopy
$-\left[\bar{D}^{\text {spin }}\right] \in \operatorname{KK} O_{-n}^{G}\left(C_{0}(\bar{M}, \mathbb{R}), \mathbb{R}\right) \cong K O_{-n}(M)$ - equivariant K-homology class of $\bar{D}^{\text {spin }}$
$-f_{*}\left[\bar{D}^{\text {spin }}\right] \in R K K O_{n}^{G}(E G, \mathbb{R}, \mathbb{R}) \cong K O_{-n}(B G)$
- under $K O_{*}(B G)_{\mathbb{Q}} \cong H_{*}(B G, \mathbb{Q}[p])$ with $|p|=4$ this class is

Atiyah-Singer index theorem: $f_{*}\left[\bar{D}^{\text {spin }}\right]_{\mathbb{Q}}=f_{*}([M] \cap \hat{A}(T M))$
Conjecture 4.134 (Gromov-Lawson-Rosenberg). If \bar{M} admits a metric of positive scalar curvature, then $f_{*}\left[\bar{D}^{\text {spin }}\right]=0$. In particular $\left(f_{*}([M] \cap \hat{A}(T M))=0\right.$.

- higher \hat{A}-genera of M vanish
- in general: even if D is invertible the class $[D]$ can be non-zero
$-\mu_{G, \mathbb{R}, \mathbb{R}}^{K a s p}\left(D^{\text {spin }}\right)=\alpha_{G}(M) \in K O_{-n}\left(C_{\mathbb{R}, r}^{*}(G)\right)$ - real version of Kasparov assembly map
Corollary 4.135. Assume that $\mu_{G, \mathbb{R}, \mathbb{R}}^{K a s p}$ (the real version) is injective (e.g. G admits a γ-element). Then if M admits a psc metric, then $f_{*}\left[\bar{D}^{\text {spin }}\right]=0$ in $K O_{-n}(B G)$.
this says that $f_{*}\left[\bar{D}^{\text {spin }}\right]=0$ is necessary condition
- $f_{*}\left[\bar{D}^{\text {spin }}\right]=0$ in $K O_{-n}(B G)$ is very close to existence of psc metric
- e.g. for trivial group: Stolz

Example 4.136 (signature operator).
M oriented
$\operatorname{dim}(M)=2 l$ even
$E=\bigoplus_{i=0}^{n} \Lambda^{i} T^{*} M$

- has Dirac bundle structure of degree 0
- grading on p-forms by $i^{p(p-1)+l} *$ on $\Lambda^{p} T^{*} M$
- there exists a Dirac bundle structure
- Dirac operator $d+d^{*}=D^{\text {sign }}$
- get class index $\mathcal{X}\left(D^{\text {sign }}\right) \in K \mathcal{X}_{0}^{G}(M)$

Proposition 4.137. If M is compact and l is even, then $\operatorname{index} \mathcal{X}\left(D^{\text {sign }}\right)=\operatorname{sign}(M)$.
fix G

- consider M compact connected manifold with $G=\pi_{1}(M)$
- $\bar{M} \rightarrow M$ universal covering
- G-action
- $f: M \rightarrow B G$ classifying map
- $D^{\text {sign }}$ gives rise to class $\left[D^{\text {sign }}\right] \in \operatorname{KK}_{0}(C(M), \mathbb{C}) \cong K_{0}(M)$ - K-homology

Conjecture 4.138 (Novikov-Conjecture). The class $f_{*}\left[D^{\text {sign }}\right]_{\mathbb{Q}}$ in $K_{0}(B G)_{\mathbb{Q}}$ only depends on the homotopy type of M.
under $K_{*}(B G)_{\mathbb{Q}} \cong H_{\mathrm{ev}}(M, \mathbb{Q})$
$-f_{*}\left[D^{\text {sign }}\right]_{\mathbb{Q}}=f_{*}([M] \cap L(T M))$

- $L(T M)$ - characteristisc class of tangent bundle
- apriori depends on smooth structure
- actually only on topological manifold

Conjecture 4.139 (Novikov-Conjecture). The class $f_{*}([M] \cap L(T M))$ in $H_{\mathrm{ev}}(B G, \mathbb{Q})$ only depends on the homotopy type of M.

- $\bar{D}^{\text {sign }}$ - signature operator on \bar{M}
- $K^{G}\left(C_{0}(\bar{M}), \mathbb{C}\right) \cong K(C(M), \mathbb{C})$
$-\left[\bar{D}^{\mathrm{sign}}\right]=\left[D^{\mathrm{sign}}\right]$ under this iso
Theorem 4.140 (Mischenko-Fomenko). The class index $\mathcal{X}\left(\bar{D}^{\text {sign }}\right) \in K_{0}\left(C_{r}^{*}(G)\right)$ is a homotopy invariant of \bar{M}.

Corollary 4.141. If $\mu_{G, \mathbb{C}, \mathbb{C}}^{K a p}$ is rationally injective, then the Novikov conjecture holds for G.

Example 4.142 (L^{2}-index theorem).
M closed compact, connected
$-\pi_{1}(M)=G$

- D - Dirac operator of degree 0
- index $\mathcal{X}(D) \in K \mathcal{X}_{0}(M) \cong \mathbb{Z}$
- \bar{M} - universal covering
- \bar{D} - G-invariant
- index $\mathcal{X}(\bar{D}) \in K \mathcal{X} \mathcal{X}_{0}(\bar{M}) \cong K_{0}\left(C_{r}^{*}(G)\right)$
$\operatorname{tr}: C_{r}^{*}(G) \rightarrow \mathbb{C}$
- $f \mapsto f(e)$
- is faitful: $a \in C^{*}, a \geq 0$ and $\operatorname{tr}(a)=0$ implies $a=0$
$-\operatorname{tr}(1)=1$
get induced map $\operatorname{tr}: K_{0}\left(C_{r}^{*}(G)\right) \rightarrow \mathbb{R}$
$-[p] \mapsto \operatorname{tr}(p)$
- extend tr to matrix algebras

Theorem 4.143 (Atiyah L^{2}-index theorem).

$$
\operatorname{tr}(\operatorname{index} \mathcal{X}(\bar{D}))=\text { index } \mathcal{X}(D)
$$

Example 4.144 (Kadison-Kaplansky conjecture).
Conjecture 4.145. If G is torsion-free, then $C_{r}^{*}(G)$ does only have the trivial projections 0 and 1.

Proposition 4.146. If $\mu_{G, \mathbb{C}, \mathbb{C}}^{K a s p}$ is surjective, then the Kadison-Kaplansky conjecture holds.

Proof. claim: if p is projection in $C_{r}^{*}(G)$, then $\operatorname{tr}(p) \in \mathbb{Z}$
assume claim:

- note: $0 \leq p \leq 1$
- hence $\operatorname{tr}(p) \in\{0,1\}$
- trace faithful
- hence $p \in\{0,1\}$
show claim:
$p=\mu_{G, \mathbb{C}, \mathbb{C}}^{\text {Kasp }}(x)$
$-x \in R \mathrm{KK}_{0}(E G, \mathbb{C}, \mathbb{C})$
- there exists $S \operatorname{Sin}^{c}$-manifold M of even dimension
- exists map $f: M \rightarrow B G$ (classifying \bar{M})
- $\bar{M} \rightarrow E G$
$-x=f_{*}\left(\left[D^{\text {spin }^{c}}\right]\right)$
- $\mu_{G, \mathbb{C}, \mathbb{C}}^{\text {Kasp }}(x)=$ index $\mathcal{X}\left(\bar{D}^{\text {Spin }^{c}}\right)$ in $K_{0}\left(C_{r}^{*}(G)\right)$
- Atyiah L^{2}-index theorem $\operatorname{tr}(p)=\operatorname{tr}$ index $\mathcal{X}\left(\bar{D}^{\text {Spin }^{c}}\right)=\operatorname{index} \mathcal{X}\left(D^{\text {Spinc }}\right) \in \mathbb{Z}$
why do we need G to be torsion-free:
assume G has torsion element g
- order n
- $q:=\frac{1}{n} \sum_{i=0}^{n-1} h^{n}$ is non-trivial projection
$-\operatorname{tr}(q)=\frac{1}{n}$
- so assumption on torsion of G is necessary

Question: Does tr : $K\left(C_{r}^{*}(G)\right) \rightarrow \mathbb{R}$ take values in $1 / n \mathbb{Z}$ where n is the is the common multiple of torsion

Corollary 4.147 (A consequence of Kadison-Kaplansky). $\mathbb{Q}[G]$ has no non-trivial idempotent

Example 4.148 (Zero-in-the -spectrum conjecture).
M - compact aspherical
Conjecture 4.149. 0 is in the spectrum of of one of the Hodge Laplacians on \bar{M}
$G=\pi_{1}(M)$
Proposition 4.150. injectivity of the Assembly map implies the zero-in Zero-in-the -spectrum conjecture

Proof. assume: $\operatorname{dim}(M)$ is even
note: $\left(\bar{D}^{\text {sign }}\right)^{2}=\bigoplus_{n=0}^{\operatorname{dim}(M)} \Delta_{n}$
argue by contradiction

- then $\bar{D}^{\text {sign }}$ is invertible
use: $\left[D^{\text {sign }}\right] \neq 0$ in $K_{0}(M)$
- even rationally by Atiyah-Singer
- since $[M] \cap L(T M) \neq 0$
- look at degree-dim (M)-component which is $[M]$
$\mu_{G, \mathbb{C}, \mathbb{C}}^{K a s p}\left(\left[D^{\text {sign }}\right]\right)=\operatorname{index} \mathcal{X}\left(\bar{D}^{\text {sign }}\right)=0$
contradiction
for even case cross with circle

Farber-Weinberger: there exists non-aspherical examples with no zero in the spectrum

References

[BE17] Ulrich Bunke and Alexander Engel. The coarse index class with support. 06 2017.
[BE23] Ulrich Bunke and Alexander Engel. Topological equivariant coarse K-homology. Ann. K-Theory, 8(2):141-220, 2023.
[BELa] U. Bunke, A. Engel, and M. Land. Paschke duality and assembly maps. arxiv:2107.02843.
[BELb] U. Bunke, A. Engel, and M. Land. A stable ∞-category for equivariant KK-theory. arxiv:2102.13372.
[BGR77] L. Brown, Ph. Green, and M. Rieffel. Stable isomorphism and strong morita equivalence of C^{*}-algebras. Pacific Journal of Mathematics, 71(2):349-363, aug 1977.
[BGV04] Nicole Berline, Ezra Getzler, and Michèle Vergne. Heat kernels and Dirac operators. Berlin: Springer, paperback ed. edition, 2004.
[Bla98] B. Blackadar. K-Theory for Operator Algebras. Cambridge University Press, 2nd edition, 1998.
[Bro77] L. Brown. Stable isomorphism of hereditary subalgebras of C^{*}-algebras. Pacific Journal of Mathematics, 71(2):335-348, aug 1977.
[Bun18] Ulrich Bunke. Coarse homotopy theory and boundary value problems. 062018.
[Bun23] Ulrich Bunke. Coarse geometry. 052023.
[DL98] J. F. Davis and W. Lück. Spaces over a Category and Assembly Maps in Isomorphism Conjectures in K - and L-Theory. K-Theory, 15:201-252, 1998.
[Ech10] S. Echterhoff. Crossed products, the Mackey-Rieffel-Green machine and applications. In K-Theory for Group C^{*}-Algebras and Semigroup C^{*}-Algebras, chapter 2. Springer International Publishing, 2010.
[GAJV19] Maria Paula Gomez Aparicio, Pierre Julg, and Alain Valette. The Baum-Connes conjecture: an extended survey. In Advances in noncommutative geometry-on the occasion of Alain Connes' 70th birthday, pages 127-244. Springer, Cham, [2019] ©2019.
[GM97] J. P. C. Greenlees and J. P. May. Localization and completion theorems for MU-module spectra. The Annals of Mathematics, 146(3):509, nov 1997.
[Haa99] Ulrich Haag. On Z/2Z-graded $K K$-theory and its relation with the graded Ext-functor. J. Operator Theory, 42(1):3-36, 1999.
[Joa03] M. Joachim. K-homology of C^{*}-categories and symmetric spectra representing K-homology. Math. Ann., 327:641-670, 2003.
[Kra20] J. Kranz. An identification of the Baum-Connes and Davis-Lück assembly maps. Münster J. of Math., 14:509-536, 2020.
[KS03] Gennadi Kasparov and Georges Skandalis. Groups acting properly on "bolic" spaces and the Novikov conjecture. Ann. Math. (2), 158(1):165-206, 2003.
[Mey00] R. Meyer. Equivariant Kasparov theory and generalized homomorphisms.

K-Theory, 21:201-228, 2000.
[MV03] Guido Mislin and Alain Valette. Proper group actions and the Baum-Connes conjecture. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2003.
[Par15] W. Paravicini. kk-theory for Banach algebras II: Equivariance and Green-Julg type theorems. Journal of Functional Analysis, 268(10):3162-3210, may 2015.
[Tho98] K. Thomsen. The universal property of equivariant KK-theory. J. reine angew. Math., 504:55-71, 1998.
[Wil07] D. P. Williams. Crossed Products of C*-Algebras. Number 134 in Math. Surveys nad Monographs. Amer. Math. Soc., Providence, RI, 2007.

[^0]: *Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, ulrich.bunke@mathematik.uniregensburg.de

